Entornos
de
Desarrollo

12 DAM/DAW

Indice

UD 1: Sistemas informaticos........ 4

1. Sistema informatico..........cccueun.... 5
Capas de un sistema informatico.7

2. Hardware.....ocooveeeeneneeeneneeenes 8
Arquitectura......ccoeeveeveereneeniennne. 10
Sistemas actuales........cccoeevuennenee. 11

3. Sistema operativo..........ceenuenens 13
Sistema de arranque..........ccc....... 13
Funciones de un sistema operativo
.. 14

4. Aplicaciones.......ccccevcvevveneeniennne 16
Coste de desarrollo.........ccceeennen. 16

Plataformas de una aplicacion...17

UD 2: Etapas del desarrollo........ 22
1. Desarrollo del software.............. 23
El modelo en cascada........cco.u.... 23
2. ANALISIS. i 25
Planificacion........cceeeeeevieneecieniens 25
Obtencién de los requisitos........ 27
Cas0S d€ USO...ccueeeevverieneeniesiennans 29
Otras tareas.....cceceeveerverceeneenneennen 30
3. DISEA0..ccciieieeieeeeeee e, 31
Disefio arquitecténico.................. 31
Selecciéon de tecnologias.............. 31
Modelado de datos.........cceeeuenne 32
Interfaz de usuario.......cceeceevenns 32
Disefio del plan de pruebas........ 32

4., Codificacion....ooevvuveeeeivecneeeeeennns 33

Compiladores e intérpretes........ 33
Frameworks y librerias................. 35
Tipos de lenguajes......c.ccccecevuenenne. 35
5. Prueba.....ccoceeieeniiniiieeieneee 37
6. Mantenimiento.........ccecevveeneene 38
EXPlOtacion.......ccceevevenrevencriencecnnen 38
Mantenimiento.......ccceeveeveeneenienne 39
7. Documentacion.........ccccevveenennn. 41
8. Ciclos de vida software.............. 42
Modelo en Cascada........ccccecvenenne 42
Modelo en Espiral.....c..cccceeenennene 42
Desarrollo Agil.........ccoeeeveeevrunnne. 43
Modelo en V....cccocveveneneneeeneenne, 44
Modelo RAD........ccceveevierieieiene 44
9. Herramientas......cccccceevvvenveennnne. 45
Clasificacion......ceveverenenienieniennen 46
UD 3: Casos de USO........ccceeeveunnens 48
1. Cas0S d€ USO....ccecvererrveerrreerneenns 49
ACLOIES..eutiiiieeeee et 49
Flujo principal, descripcion y notas
.. 50
Flujos alternativos..........cccceeueee. 51
Precondiciones y postcondiciones
.. 52
Desglosar un paso.......c.cccceervenene 53

Repeticiones y cambios de paso 54
2. Diagrama frontera.......ccoccevuvnueee 56

3. Relaciones........covvveeieieinvennceenns 58

Interaccién o asociacion.............. 58 5. EXtenSiON.....ccccoovvvvvrveeeiiiiiiieeenn, 65

Generalizacion o especializacién58 ¢ Resumen y ejercicios.................. 67
4, INCluSiON....cociirieieeeeeeeiee 61

Precondicion........ccceeveveeececeeennne 61 UD 4: 1. Diagramas de Estado....76

Dividir un proceso complejos.....62 1, Elementos...........coeouerveeereerrennnen. 77

Realizar una tarea comun........... 63

2. Eventos de salida............ccoouuu.eee. 80

UNIDAD DIDACTICA 1:

Sistemas
informaticos

1.S1stema informatico

Un sistema informdtico es cualquier dispositivo electrénico que
permita la libre ejecucion de una serie de programas informaticos, los

cuales permitan realizar una serie de tareas, entre ellas, guardar y procesar
informacién. Por ejemplo, un ordenador portatil es un sistema informatico,
porque permite ejecutar programas. Sin embargo, un reloj digital clasico no
lo es porque las entradas que posee (botones), tan solo nos permiten
gestionar una serie de comportamientos pre-establecidos en fabrica.

Algunos sistemas informaticos parecen no serlo porque el usuario final tan
solo puede usar un conjunto limitado de opciones, mientras que un
administrador si que puede ejecutar todo tipo de programas. Por ejemplo,
el expendedor de tiques de transporte publico de la figura realmente es un
equipo informatico, algo que se puede adivinar por la pantalla (esta
ejecutando un programa con un interfaz de usuario), aunque el usuario
final tan solo puede realizar ciertas funciones muy concretas.

Existen cierto hardware que realmente es un sistema informatico, aunque
mas limitado, en el que un hardware ejecuta un programa escrito en
memoria no volatil, a modo de firmware, como un router o una impresora.
Este programa que ejecutan puede cambiarse actualizando dicho firmware.
Estos sistemas informaticos se llaman empotrados.

Ej. 1: ;Cudles de los siguientes son equipos informaticos, y cuales son
sistemas informaticos empotrados?:

* Un movil.

* Una calculadora clasica.

* Un cajero de un banco.

* Un proyector.

* Una maquina expendedora de refrescos.
* Un smartwatch.

* Un frigorifico con conexién a Internet.

* Una PlayStation 5.

* Un iPod nano.

Solucion: Un mdvil, un smartwatch y una PlayStation son dispositivos
que ejecutan aplicaciones, por lo que son, inequivocamente, sistemas
informaticos.

Una calculadora clasica no es un sistema informatico porque su funcién
estd implementada por hardware, y no puede ejecutar programas.

Un cajero de banco, actualmente, esta implementado por un PC o
similar, por lo que si es un sistema informatico. Pudiera parecer lo
contrario porque el usuario final solo tiene disponibles ciertas acciones,
pero un administrador podra configurar muchas mas cosas. De hecho,
el programa en si que el usuario usa, es una aplicacion.

Un proyector, una maquina expendedora de refrescos, un frigorifico con
conexion a internet y un iPod nano son sistemas empotrados, porque
ejecutan un programa especifico en su firmware.

Ej. 2: De los siguientes ¢cuales son sistemas informaticos, y cuéles
son empotrados?:

* Un portatil.

+ Automovil (los dispositivos internos, no Android Auto ni similar).
* Un reloj.

* Un termémetro digital.

* Sistemas de navegaciéon GPS

* Un voltimetro.

* SmartTV

Capas de un sistema informatico

El hardware es la parte “fisica” del sistema informatico, es decir, todos los
componentes electronicos y el resto de materiales que pueden tocarse
fisicamente. El resto de elementos (aplicaciones y sistema operativo) son

software.

Ej: Writer, Firefox, Telegram, Steam, VSCode

Aplicaciones . . ,
P Obj: Tareas usuario: crear documento, jugar, etc.

Ej: Windows, Linux, MacOS, Android, CellOS.
Sistema operativo | Obj: Organizar la ejecucion de programas vy
Ocultar los detalles del hardware.

Ej: PC, Arduino, Tablet, PS4.

Hardware,
Obj: Proporcionar soporte para ejecucion.

Para gestionar todos esos recursos hardware, estd el sistema
operativo, que provee de una plataforma comuin a los programas y
gestiona los recursos y también la ejecucién de programa, para que éstos
puedan ejecutarse, independientemente de los detalles hardware.

Las aplicaciones son los programas que se ejecutan para que el usuario
pueda realizar la tareas que desee.

Ej. 3: Pon mas ejemplos de aplicaciones. Esas aplicaciones,
¢necesitan a otros programas para ejecutarse (Google Maps en PC, etc.)?

Ej. 4: Pon un ejemplo de hardware que componga un sistema
informatico.

Ej. 5: Pon un ejemplo de sistema operativo. Dicho sistema operativo
;esta creado para un sistema hardware concreto, o para varios de ellos?

2 .Hardware

La Unidad Central de Proceso (CPU) es la que ejecuta los programas,
compuestos por muchas instrucciones. Para cada instruccion ejecutada, el
ordenador envia las 6rdenes necesarias al resto de elementos.

SATA
Q
NVNMe

ﬁa
- MEMORIA

NES

La CPU tiene una conexion dedicada con la memoria, donde se
encuentran tanto los programas a ejecutar (juego, editor de texto, etc.)
como los datos a utilizar. La CPU carga desde memoria esos programas y
los ejecuta, leyendo y modificando los datos segun éstos programas
indiquen. Toda la informacién almacenada en la memoria se pierde
cuando el computador se apaga.

Para comunicarse con el resto de elementos, la CPU tiene una conexién de
alta velocidad con el chipset, el cual se comunica con el resto de
elementos para intercambiar datos entre los distintos elementos.

Conectados al chipset estan los dispositivos de entrada y salida,
que intercambian, gestionan o almacenan informacién. Asi, por ejemplo,
puede haber un programa ejecutandose en la CPU que sea un editor de
texto, que puede emitir la orden de mover ciertos datos desde el disco
duro (correspondientes a un archivo de texto que se desea editar) hacia la

memoria. Un dispositivo es de entrada cuando el computador recibe datos
(o le entran datos), y es de salida cuando el computador emite datos (saca
datos). Muchos dispositivos son, principalemente, tato de entrada como
salida, como por ejemplo una .tarjeta de red

El almacenamiento es un tipo de dispositivo de entrada/salida que
almacena la informacién de forma permanente. Es mas lenta pero de
mayor tamafo que la memoria principal. Ejemplos son el disco duro y el
almacenamiento interno de un smartphone. No hay que confundir este
elemento con la memoria principal.

Otro tipo de dispositivo de dispositivo de entrada/salida son los
periféricos, que se encuentran en el exterior del sistema informético,
conectados a éste a través de un cable, wifi, bluetooth o similar.
Ejemplos de periféricos serian el ratén o el monitor.

Ej. 6: Un programa que se estd ejecutando lee constantemente el
teclado, en espera de que el usuario pulse una tecla, guardando la tecla
pulsada en memoria. Al ser pulsada, esa tecla es mostrada en el
monitor. Identifica los pasos generales de intercambio de datos entre
los distintos elementos del computador.

Solucion: Se realiza un envio de datos desde el teclado hasta la
memoria. Eventualmente, la CPU lee esa memoria y envia la orden de
escribir el caracter asociado a la tecla pulsada hacia el monitor.

Ej. 7: Otro programa que se esta ejecutando trata de leer ciertas
texturas guardadas en el disco duro y enviarlas a la GPU externa.
Identifica los pasos generales de intercambio de datos entre los
distintos elementos del computador.

Solucion: la CPU inicia la lectura en disco, momento en el cual el chipset
toma el control, moviendo los datos (las texturas en este caso), a la
memoria de la GPU externa.

10

Ej. 8: Identifica si los siguientes dispositivos son dispositivos de
entrada, de salida o ambos. Identifica también cuales de ellos de tipo
de almacenamiento, y cuales son periféricos, o pueden serlo:

* Un teclado.

+ Cascos de audio sin micro.
* Disco duro interno.

* Disco duro externo.

* Un ratén.

* Una pantalla.

* Una pantalla tactil.

* Altavoces externos.

» Cascos de Realidad Virtual.
* Un pendrive.

* Un mando de juego.

* Una tarjeta de red / wifi.

» Un “pinganillo” bluetooth para un mévil.

Solucion: son de entrada: el teclado, el ratén y el mando de juego,
puesto que, desde la perspectiva de la CPU, entran datos desde esos
dispositivos. De forma inversa, son de salida los cascos, la pantalla, los
altavoces y el pinganillo. El resto son de entrada y salida.

Periféricos son el teclado, los casos, el disco duro externo, los altavoces
externos, los cascos de realidad virtual, el pendrive, el mando de juegoy
el pinganillo, pues son externos al PC (se conectan al PC por cable,
bluetooth u otro).

Arquitectura

Existen diversas arquitecturas de computadores. Cada arquitectura
consiste en definir una serie de caracteristicas que un computador que sea
acoja a dicha arquitectura debe implementar: el juego de instrucciones,
microarquitectura, disefio légico, etcétera. Ejemplos de arquitecturas son:

« X86. Es la arquitectura de los antiguos PCs.

» x86_64 (también llamado amd64). Creada por AMD en 1999, es
la arquitectura actual empleada en los PCs, y es retrocompatible
con la arquitectura x86, es decir, puede ejecutar programas

creados con la arquitectura x86. Domina el mercado de escritorio
y de consolas.

« ARM. Es una arquitectura energéticamente eficiente, aunque no
tan buena en computacién intensiva (gaming, servidores, etc.).
Domina el mercado de moviles y otros dispositivos portatiles,
incluidos los computadores de Apple.

* RISC-V. Libre y abierta, puede usarse sin pagar licencia. Esta
pensada para implementaciones sencillas, rapidas, pequefias y de
bajo consumo.

Los programas compilados para una arquitectura no son ejecutables en
otra. Hay programas que son capaces de generar programas para varias
plataformas.

Sistemas actuales

Actualmente, hay diversos mercados objetivo para los sistemas
informaticos, algunos de los cuales son:

« PCs de escritorio y ordenadores portdtiles. Tienen
arquitectura x86_64, y procesadores (CPUs) con 6 a 16 nucleos.
Suelen ejecutar Windows o Linux.

« Portdtiles Apple. Tienen una micorarquitectura propia dentro
de la arquitectura ARM y ejecutan MacOs.

« Moviles. Tienen arquitectura ARM, con nucleos de rendimiento y
nucleos de eficiencia energética. Ejecutan Android en mdviles
disefiados para este sistema, o0 iOs para iphones, aunque existen
otros sistemas operativos como LineageOS.

« Servidores. Suelen ser computadores con arquitectura x86_64
con hardware de virtualizacién, gran cantidad de nucleos y, a
menudo, varios procesadores.

11

« Routers. Aunque algunos aun usan la arquitectura MIPS (una
arquitectura de bajo consumo y libre), la mayoria de ellos usan
hoy dia ARM. Los grandes routers de gran rendimiento, que
pueden verse en data centers y organizaciones similares, suele
utilizar x86_64. Suelen emplear sistemas propietarios o sistemas
Linux adaptados.

Uno de los limites mas importantes en los sistemas es su fuente de
energia. Por ello, servidores y Pcs de escritorio pueden conseguir mucha
mas capacidad de cobmputo que otros sistemas alimentados por bateria.

Ej. 9: ¢(Qué arquitecturas mas comunes usan hoy dia los portéatiles?
¢Qué arquitectura usa una PS5?

Solucidn: los portatiles usan, hoy dia, la arquitectura x86_64, ya que
realmente son PCs, que también usan dicha arquitectura. La excepcion
a ello son los portatiles Apple, que usan una arquitectura ARM. Una
PS5, si consultamos la pagina de la Wikipedia, vemos que es realmente
un PC modificado, por lo que su arquitectura es también x86_64.

Ej. 10: ;Podria el juego Cyberpunk 2077, que apenas va en una PS4,
jugarse en un mévil?

Solucién: Aunque hoy dia los moviles son bastante potentes, tienen la
limitacién de la bateria y un procesamiento 3D que no puede llegar al
que puede mover un PC o un portatil con una tarjeta grafica dedicada.
Ademas, los desarrolladores de Cyberpunk 2077 se vieron forzados a
introducir numerosos hacks para que el juego fuera ejecutable en PS4.
Por tanto, hacer que se ejecute en un mdévil seria inviable sin muchos
sacrificios. Observa que Nintendo Switch es parecida en potencia a
ciertos moviles, y es incapaz de ejecutar muchisimos juegos AAA.

3.Sistema operativo

El sistema operativo gestiona es una primera capa de software que
gestiona el hardware subyacente, y permite ejecutar programas.

Sistema de arranque

Cuando un sistema informatico se enciende, el hardware automaticamente
ejecuta un pequefio programa que estd escrito en la placa base, llamado
BIOS, UEFI, Bootloader u otro segun el hardware concreto. Este programa,
que puede ser configurado, se encarga de cargar el nucleo del sistema
operativo desde un dispositivo de almacenamiento, tras lo cual le otorga el
control.

Tras ello, este nucleo de sistema operativo carga el resto de si mismo, y
también ejecuta otros programas, como la interfaz de usuario que permite
al usuario seleccionar y ejecutar programas.

Ej. 11: ;Es posible que haya hardware cuyo sistema de arranque
limite qué sistemas operativos pueden o no cargarse? ;o bien realizar
limitaciones de acceso a ciertos componentes hardware?

Solucién: si, de hecho el sistema de arranque seguro de UEFI que hay
en numerosos PCs y portatiles te impide instalar sistemas operativos
distintos al Windows que traen por defecto o, como minimo, te impide
usar partes del hardware (puedes introducirte en la BIOS y desactivar el
arranque seguro).

Los moviles y tablets son otro hardware cuyo sistema de arranque
(llamado bootloader) que te impide cambiar el sistema operativo que
tienen. Para hacerlo, debes hackear el bootloader para poder cambiar
el sistema del movil.

13

14

Funciones de un sistema operativo

Estando ya ejecutdndose el sistema operativo, éste inicia la ejecucion de
ciertos moédulos del sistema operativo como son la interfaz de usuario o
programas en segundo plano que mantienen el correcto funcionamiento
del sistema.

A la orden del usuario, o seguin esté configurado el sistema operativo, éste
gestiona la ejecucion de las diversas aplicaciones que permitiran al usuario
realizar las tareas que desee.

El sistema operativo provee, ademas, de una plataforma base para que se
ejecuten las aplicaciones. Proporciona a las aplicaciones una serie de
herramientas, que las aplicaciones pueden usar para realizar una serie de
funciones, como grabar un fichero a disco, mostrar un texto en pantalla,
etcétera. De esta forma, las aplicaciones no tienen que preocuparse de
cdmo exactamente se guarda ese fichero, o cdmo se muestra ese texto,
sino que es el sistema operativo quien se encarga de ello. Cuando un
programa hace uso de alguna de esta funciones se dice que realiza una
llamada al sistema.

Programa Programa Programa

Llamada Llamada Llamada Libreria SO

Sistema operativo
Gestiona recursos compartidos, seguridad, etc.

Acceso al hardware por el SO (no por el programa directamente)

Hardware Hardware Hardware Hardware

Cuando se realiza una de éstas llamadas al sistema, el sistema operativo
toma el control y realiza la funcién solicitada, si es posible. Esto permite al
sistema operativo esconder los detalles del hardware, permitiendo a la
aplicacion funcionar de igual forma independientemente de que el
hardware sea uno u otro.

Ej. 12: ;Deberia ser posible que dos programas tengan activas dos
llamadas, las cuales hagan uso de un mismo disco duro?

Solucién: si, dado que los ordenadores actuales ejecutan varios
programas en paralelo, programas que puede perfectamente ser
independientes, nada impide que, en un momento dado, varios quieran
acceder al disco duro. Ahi, el sistema operativo sera el responsable de
ordenar esas peticiones de acceso, segun las politicas establecidas.

Ej. 13: ;Deberia el sistema operativo resolver las llamadas que hagan
uso de un hardware concreto de forma simultanea?

Solucién: En algunos recursos (como el disco duro) el sistema operativo
envia varias peticiones a la vez, que luego éste resuelve a su manera,
pero en otros componentes hardware el sistema operativo decidira cual
enviar primero.

Existen alguna librerias del sistema que extienden la funcionalidad del
sistema operativo, como por ejemplo las librerias DirectSound (que permite
a las aplicaciones manejar la reproduccién y captura de audio en
aplicaciones y juegos en sistemas Windows) o Google Play Services (que
permite que a las aplicaciones de Android acceder a funciones como la
ubicacion, autenticacion, y servicios de Google). para dispositivos Android.
Estas librerias proporcionan a las aplicaciones una nueva bateria de

llamadas al sistema que realizan funciones adicionales.

Ej. 14: Existe una libreria de sistema de Windows necesaria para
ejecutar juegos en dicho sistema ¢cual seria?

Solucion: DirectX es la libreria de sistema tipica en windows, aunque
hoy dia Vulkan también puede cumplir la misma funcién.

15

16

4.Aplicaciones

Las aplicaciones son el software que se ejecuta para que el usuario pueda
realizar la tareas que desee.

Coste de desarrollo

Las aplicaciones cuestan mucho mas tiempo y dinero del que suele
pensarse: Desarrollar una aplicaciéon profesional puede requerir afios en la
que trabajan desde decenas hasta miles de trabajadores. Por ejemplo, en
2013, la compafiia Naughty Dog cred, tras 3 afios de desarrollo, el juego
Last of Us para el sistema operativo CellOS, que es el S.0. de la PlayStation
3, con la participacion de mas de mil personas y varias decenas de millones
de dodlares de presupuesto. Las aplicaciones se financian de distintas
formas, como un precio de venta, publicidad, micropagos, venta de datos,
etc.

Ej. 15: Genshin Impact es un juego de movil, en el que simplemente
exploras un mundo luchando contra monstruos, looteando y realizando
misiones ;Qué coste ha tenido el juego? ;Qué motivos puede haber
para ese coste?

Solucion: en la pagina «List of most expensive video games to develop»
se dice que elcoste ha sido de méas de 700 millones de délares, aunque
una parte importante de ese presupuesto se debe al marqueting.

Hay que observar que es un juego de mundo abierto, con mucho
contenido en arte (personajes, escenarios, ciudades, monstruos,
conjuros, etc.), disefio de niveles (quests, PNJs, tutoriales, escenario,
etc.), reglas (conjuros, poderes, personajes, balance de juego), aparte
del desarrollo general (3D, controles, prueba en distintas plataformas,
etc.). Ademas, esta el coste de servidores y personal de mantenimiento
del juego, facturacion, moderacidn, etcétera.

Plataformas de una aplicacion

Cuando unos desarrolladores de software crean un programa, éste se
realiza, generalmente, para un Unico sistema operativo. Por ejemplo,
existen juegos que son exclusivos de XBOX (Halo). Sin embargo, a los
desarrolladores puede interesarles sacar su aplicacion para varios
sistemas. Asi, por ejemplo, la empresa Naughty Dog lanzé, en 2013, Last of
US para CellOS, el sistema de Playstation 3. Un afio después, lo lanzé para
Orbis OS, el S.0. de la PlayStation 4.

Ciertas técnicas pueden ser de gran ayuda para los desarrolladores a la
hora de sacar su aplicacion para un segundo o sucesivos sistemas, pero
siempre requiere de un esfuerzo adicional el soportar mas sistemas, pues
hay que testearlos y mantenerlos en varios sistemas. Otras veces, hay
factores que impiden o hacen poco deseable el portar una aplicacién a
otras plataformas.

Ej. 16: El uego Among Us fue disefiado para ser jugado en local (son
los jugadores en el mismo lugar y, mas tarde, se afiadié un modo online.
Son capaces los desarrolladores de Among Us que, después de que su
juego se hiciese viral, apenas consiguieron crear algin mapa nuevo y
corregir errores, soportar plataformas adicionales?

Solucion: los escasos desarrolladores quedaron desbordados por el
ndimero de jugadores que requeria servidores y mantenimiento de esa
estructura de juego online. Apenas pudieron hacer mas puesto que el
juego no estaba originalmente pensado para ser online. Esto les
impidi6 crecer de forma adecuada e implementar mejoras de forma
efectiva.

Ej. 17: ;Le interesaria a Microsoft, propietaria del S.0. Windows, que
el paquete Microsoft Office se ejecute en el sistema operativo rival
Linux?

Solucion: El deseo de Microsoft es seguir imponiendo su sistema
operativo Windows a la comunidad de usuarios, para imponer su
market o su publicidad dentro de Windows. Aunque Office es un
programa que genera ventas, Microsoft a menudo proporciona
descuentos (para estudiantes, ONGs, docencia, etc.), para que Windows

17

18

siga siendo el sistema dominante. Permitir que se ejecute en Linux
facilitaria que algunos usuarios (aquellos cuya principal barrera para el
cambio es tener que dejar de usar Office y poco mas) pudieran
abandonar Windows.

Ej. 18: ;Interesaria a Discord, una empresa de audio y videollamadas
gratuita, soportar nuevos sistemas? ;En qué casos lo haria?

Solucion: Discord es una aplicacion que necesita que los usuarios a
comunicar usen todos un sistema compatible con su aplicacién, por lo
que necesita extenderse lo mas posible. Discord solo dejara fuera
sistemas con pocos usuarios 0 que no tengan relevancia para su
aplicacién.

Ciertas aplicaciones especiales, llamadas emuladores, que son capaces
de ejecutar programas destinados a otros sistemas. Asi, por ejemplo, Wine
es capaz de ejecutar programas de Windows en entornos Linux, o el
programa MAME puede ejecutar las ROMS de las antiguas maquinas
recreativas de los 80y 90.

Ej. 19: ;Qué motivos tiene Valve, propietaria de la plataforma Steam,
para crear y mantener la aplicacién Proton (que es una extension de
wine), la cual permite jugar a juegos de Steam diseados para Windows
en entornos Linux? ;Y si tenemos en cuenta que el 98% de usuarios de
Steam son de Windows?

Solucidn: Linux no requiere pago para ser usado en la Steam Deck u
otro sistema. Ademas, Valve consigue depender menos de Microsoft,
que también tiene intereses en gaming (game pass y Xbox), que podria
en un futuro decidir perjudicar a Steam, ya sea de forma legal o ilegal
(como perjudicar su rendimiento como ya lo hace con Firefox y otras
aplicaciones).

También existe la virtualizacion, en la que el procesador posee na
unidad en la que es capaz de acelerar las ejecuciones de programas
escritos para otras arquitecturas, algo que se realiza con programas de
virtualizacién como VirtualBox, Docker, Kubernetes y otros. Algunas
virtualizaciones mas concretas podemos encontrarlas en sistema
conccretos, como por ejemplo PS3, que es capaz de ejecutar los juegos de

PS2. La virtualizaciéon nos ofrece una maquina o entorno estandar que
podemos replicar en distintas plataformas, e incluso levantar ese mismo
servicio multiples veces sobre el sistema host, que puede ser muy Util en
servidores compartidos, entornos empresariales y otros sistemas.

Ej. 20: Playstation 3, con una recepcion inicial pobre, era compatible
con PS2, pero PS4 no lo era con PS3 o anteriores? ;Por qué esto pudo
ser asi?.

Solucién: PS2 fue la consola mas vendida de Sony, y dejar de ser
compatible con ella hubiera sido un suicidio de marqueting, sin
mencionar que muchos usuarios poseian infinidad de uegos en formato
fisico para la PS2. La PS tuvo también grandes jugos, pero la apuesta de
Sony por la PS4 fue grande, en un momento de fuerza, por lo que Sony
prefirié venderte el remake de diversos juegos para la PS4, que estaban
en la PS4. Hoy dia, esos juegos (PS1, PS2 y S-) se pueden jugar con la
suscripcion mas cara de PS Plus.

Algunas aplicaciones se crean para ser usadas a través de una pagina web.
Salvo excepciones, estas aplicaciones requieren bastantes mas recursos
hardware y mas intercambio de datos de red para funcionar, e incluso
poseen ciertas limitaciones y necesitan un mayor cuidado. A cambio, tienen
la ventaja que, una vez hechas, son accesibles por multiples sistemas que
soporten un navegador web, disponibles en la los sistemas moviles y de
escritorio. Un ejemplo claro de aplicaciéon web es el buscador de Google.

Ej. 21: ;Por qué Google pagd a Apple 15M$ hace unos afios para que
su buscador siga siendo el buscador predeterminado en iphones?

Solucion: Google ingresa gran cantidad de dinero a través de la
publicidad en la web.

Ej. 22: ;Qué tipo de aplicaciones son mas adecuadas para que sus
desarrolladores elijan el desarrollo web en vez de (o ademas de)
desarrollar una aplicacion para los distintos sistemas?

Solucion: aplicaciones que deben soportar gran cantidad de sistemas,
moviles y de escritorio, son adecuadas para el en desarrollo web, ya que
los usuarios podrian no poder acceder a aplicaciones nativas.

20

También es una idea el desarrollar una aplicacion web cuando el
objetivo es facilitar el acceso a la aplicacion, puesto que la instalacion de
aplicaciones suele ser una barrera de entrada para el usuario.

También se ha venido desarrollando el sistema de desarrollo
multiplataforma, en especial en ciertas 4reas como es en los
videojuegos. Hoy dia, motores graficos como Unreal Engine, Unity o Godot,
permiten disefiar el juego en el entorno del PC, y exportarlo para multitud
de sistemas objetivo, como Nintendo Switch, Playstation 4/5, Linux, MacOS,
Windows, etcétera. Otras tecnologias, como Java o .NET, permiten realizar
una aplicacién y ejecutarla en diversas plataformas. Estos sistemas tienen
que lidiar con la heterogeneidad de los multiples sistemas que deben
soportar.

Ej. 23: ;Por qué Civilization V, que estd disponible para Windows,
Linux y MacOS, no esta disponible en Xbox, PlayStation o Switch?

Solucidn: en este caso, el juego emplea teclado, un periférico muy poco
comun en Xbox, PlayStation o Switch, por lo que existirian pocos
usuarios de estos sistemas que pudieran jugarlo.

Ej. 24: ;Por qué Helltaker, un juego realizado por un artista para
promocionarse, esta solo disponible para Linux, MacOS y Linux (empled
un sistema de desarrollo que publicaba a la vez para esos 3 sistemas),
pero no para consolas?

Solucién: El autor eligié un sistema de desarrollo que publicaba en los
citados sistemas, de forma que llegd de la forma mas facil al mayor
ndmero de usuarios. Su objetivo era promocionar su arte, y no le
interesaba desarrollar y mantener para multiples sistemas de consolas,
cada uno con contratos de confidencialidad, mantenimiento, etcétera.

Ej. 25: ;Y qué sucede con juegos como Age of Empires IV (publicado
por Microsoft exclusivo para el Game pass de Microsoft) o The Legend
of Zelda: Breath of the Wild (publicado por Nintendo y exclusivo para
sus consolas)?

Solucion: estos juegos son exclusivos para sus sistemas porque el
objetivo de sus publicadores (que encargaron y pagaron el desarrollo)

era el de atraer usuarios a sus sistemas, no el llegar a la mayor cantidad
de usuarios.

21

UNIDAD DIDACTICA 2:

Etapas del
desarrollo

1.Desarrollo del software

Es desarrollo de software es un proceso que ocurre desde que se concibe
una idea hasta que se construye una aplicacién implementada en el
sistema informatico funcionando.

El proceso de desarrollo, que en un principio puede parecer una tarea
simple, consta de una serie de pasos de obligado cumplimiento, pues sélo
asi podremos garantizar que los programas creados son eficientes, fiables,
seguros y responden a las necesidades de los usuarios finales (aquellos
que van a utilizar el programa).

El modelo en cascada

El modelo en cascada es uno de los enfoques

mas antiguos y obsoletos, cuyas fases se | Analisis |
ejecutan en secuencia (cada una debe | Disefio |
completarse antes de pasar a la siguiente): | Implementacién |
 Andlisis: se recogen y estructuran los | Prueba |
requisitos del software a desarrollar, se | Mantenimiento |

realiza una planificacion y se realiza un
modelo de alto nivel.

+ Disefio: Realiza un disefio del nuevo sistema y se crea el plan de
pruebas.

* Implementacion. Se codifica segun el disefio.
* Prueba. Se realizan las pruebas creadas en el disefio.

« Mantenimiento: se realiza la instalacién del nuevo sistema, se
arreglan los errores y, en su caso, se afiaden nuevas
funcionalidades.

23

24

El modelo en cascada, aun siendo un buen punto de partida pedagoégico, es
un modelo adecuado solo para proyectos con requisitos bien definidos y
cambios minimos, algo que no suele suceder, por lo que se usa muy poco.

2.Analisis

La importancia de esta etapa en el desarrollo de todo proyecto radica en
que todo lo demas dependera de lo bien detallada que esté esta etapa.
También es la mas complicada, ya que no esta automatizada y depende en
gran medida del analista que la realice.

Planificacion

Durante la planificacion, se establece el ambito del proyecto, definiendo el
alcance de este, los actores implicados y se intenta estimar qué se
necesitard para llevarlo a cabo:

« Se definen los objetivos y el alcance del proyecto, detallando
las caracteristicas generales que tendra.

+ Se identifican a las distintas partes que puedan estar implicadas
por la realizacién del software, asi como una primera concrecién
de como éstas serian afectadas. Esto puede incluir un estudio de
mercado.

« Se identifican los riesgos del proyecto y, de ser posible, se trazan
posibles alternativas en caso de que esos riesgos se conviertan en
realidad.

* Se realiza una primera estimacién de lo que se necesitara:
personal, equipo, tiempo, costes, etcétera, lo que suele llevar a un
plan de recursos y costes, a menudo usando un diagrama de
Gantt.

Conforme se van definiendo los requisitos, y a lo largo de todo el
desarrollo, estas estimaciones se van refinando.

Ej. 1: Un banco contacta con una empresa de desarrollo para que
implemente un cajero automatico ¢Cudles seran las partes implicadas?

25

26

Solucion: las partes implicadas serian: (1) el propio banco, cuyos
intereses primaran sobre otros implicados, (2) los clientes del banco,
que dispondran del nuevo servicio (3) los trabajadores, que tendran
que saber operar con él y (4) los administradores e instaladores, que
deberan instalar y mantener el sistema.

Ej. 2: Deseamos realizar un juego, financidndonos con la venta de
éste. Comenta algunos de los posibles riesgos de este proyecto.

Solucion: el juego podria no ser lo suficientemente atractivo para los
usuarios, o puede que haya demasiada competencia de juegos
parecidos. Es posible también que nuestro equipo no sea capaz de
realizar el juego o que el marqueting sea inadecuado.

Ej. 3: Deseamos realizar una aplicacién que consistird en la creacién y
edicion de notas, con un modelo de negocio basado en publicidad en la
aplicacién, con caracteristicas novedosas para diferenciarnos de la
competencia. Establece el alcance y objetivos; las partes
interesada/afectadas, y los riesgos.

Solucién: El objetivo del proyecto seria algo como «el realizar una
aplicacion de edicién de notas que sea rentable a través de publicidad»
En cuanto al alcance, deberemos decidir hasta donde deseamos llegar,
en este caso (a grandes rasgos) se desea una complejidad
suficientemente alta como para desmarcarse de la competencia,
incluyendo, posiblemente, un marqueting de cierto nivel.

Ej. 4: Queremos desarrollar un juego para PlayStation. Somos un
equipo de dos personas, un portatil y un 1 equipo de desarrollo y
pruebas (Sony solo nos ha asignado un devkit). Establecemos las
siguientes tareas:

+ Concepto del juego: 2 sem. (requiere 1 portatil).
(Necesario para Demo, programacion, marqueting y arte).
(Varios desarrolladores a la vez no requiere portatil extra).

* Pedir equipo de desarrollo: 1 sem. (requiere 1 portatil).
(Necesaria para las tareas que necesiten equipo de desarrollo).

* Creacién de demo. 2 sem. Requiere 1 equipo de desarrollo.
* Programacion. 3 sem. (requiere 1 equipo de desarrollo).
* Arte. 2 sem. (requiere 1 portatil).

» Marqueting. 1 sem. (requiere 1 portatil).
(Requiere Arte)

* Pruebas. 1 sem. (requiere 1 equipo de desarrollo).
(Requiere de todas las demas tareas, excepto marqueting).

Realiza un diagrama que minimice el tiempo a emplear.

Solucion: En primer lugar, puesto que tenemos que realizar el
concepto, que es llave para todo lo demas, empleamos todos los
recursos disponible a tal tarea. Tras ello, debemos pedir el equipo de
desarrollo para poder acceder a la programacion, la creacién de la demo
y las pruebas, pero el pedir los equipos de desarrollo requiere de un
portatil. Una vez conseguido el entorno de desarrollo, las tareas se
dividen segun el recruso necesario.

1(ED) Concepto Programacion Demo Pruebas

2(prt) Concepto Pedir ED Arte Marquet.

Obtencion de los requisitos

Aqui, se investigan y definen los requisitos del sistema y del software,
comprendiendo las necesidades de los usuarios y las limitaciones técnicas.
Se documentan los objetivos y las restricciones clave que guiaran el
desarrollo.

A la hora de recoger los requisitos, deben tenerse en cuenta los distintos
actores que interactuan con el sistema, no solo en usuario final. Con ello
en cuenta, se realizan dos recogidas de requisitos, en el siguiente orden:

* Requisitos del sistema: se definen los requisitos generales
del sistema al completo, tanto aspectos de negocio, de software o
de hardware. Incluye tanto requisitos internos al equipo
informatico que ejecutard el software como a toda la estructura
(redes, dispositivos externos, interfaces, etc.).

27

28

« Requisitos de software: se definen lo que debe hacer el
software y cémo debe hacerlo: temas como el rendimiento, la
escalabilidad, la seguridad o la mantenibilidad, pero siempre
desde el punto de vista del software.

Los requisitos obtenidos en las dos fases anteriores pueden ser de dos
tipos:

* Requisitos funcionales: Qué funciones tendra que realizar la
aplicaciéon. Qué respuesta dara la aplicacion ante todas las
entradas. COmo se comportard la aplicacibn en situaciones
inesperadas.

* Requisitos no funcionales: Tiempos de respuesta del
programa, legislacion aplicable, tratamiento ante la simultaneidad
de peticiones, etc.

Una vez tenemos los requisitos, debemos filtrarlos (resolviendo
contradicciones, eliminando duplicidades, etc.) y priorizados.

Tenemos un crear un software cuya idea inicial es que permita a los
usuarios crear, gestionar y marcar como completadas sus tareas diarias.
Como modelo de negocio, planeamos que se integre un sistema de
anuncios.

Requisitos del Sistema:

» Generacién de ingresos con anuncios (No Funcional).
« Almacenamiento en la nube (Funcional).

Requisitos del Software:
* Creacion, edicién y eliminacién de tareas (Funcional).
» Marcado de tareas como completadas (Funcional).

* Integracién con Sistema de anuncios (Funcional).

+ Tiempo de respuesta de la carga de tareas (No Funcional).

» Seguridad en la transferencia y almacenamiento de datos (No
Funcional).

Ej. 1: En el ejemplo anterior, se tienen en cuenta el gestionar las
tareas en distintos dispositivos. Afiade lo necesario para que las tareas
sean gestionadas conjuntamente por un grupo de usuarios. Considera
la inclusién de un administrador de grupo.

Solucion: Como hay un concepto nuevo, el de grupos, habria que
afiadir funcionalidades para crear y finalizar grupos, asi como afadir o
eliminar usuarios del grupo. También seria conveniente incorporar el
concepto de administrador, quizds por defecto el creador del grupo,
que pueda realizar estas gestiones de usuarios, asi como el eliminar el

grupo.

Ej. 2: Crea una lista de requisitos de un software para dispositivo
movil que se encargara de activar o desactivar un sistema de alarma.

Solucién: Los requisitos del software: Activar alarma (funcional),
Desactivar alarma(funcional), Ver estado de alarma (funcional), intuituva
(no funcional), seguridad (no funcional).

Respecto a los requisitos del sistema, serian la conexién con la alarma
en cuestién (funcional).

Ej. 3: Crea una lista de requisitos sobre un sistema de gestion de
biblioteca escolar.

Casos de uso

Una vez que tenemos los requisitos, es hora de darles una estructura. Se
define una estructura de alto nivel del software a realizar empleando los
diagramas de casos de uso.

30

Reloj Digital

= il
Ajustar Visualizacion

Usuario
En estos casos de uso se detallan todas las funcionalidades desde el punto
de vista de los usuarios que emplearan el sistema. Cada una de estas
funcionalidades tendra descritos los distintos pasos para que estas tareas
realizadas por el usuario sean realizadas.

Otras tareas

Durante el andlisis, puede ser necesario realizar otras tareas, segun la
naturaleza de cada proyecto. Entre otros, pueden ser:

* Prototipado: a veces es dificil obtener ciertos requisitos o la
forma en la que han de ser realizadas ciertas tareas. Para ello
puede ser util realizar un prototipo del software a realizar, que
luego es descartado.

* Estudio de impacto: cuando se tiene que decidir si el reemplazar
un sistema sera beneficioso o no, en qué puntos habra que
realizar adaptaciones y cuan complicadas pueden ser éstas.

* Estudio de viabilidad, que puede contener aspectos técnicos o
mercantiles que permitan decidir si el proyecto es posible con el
equipo y recursos de los que se dispone.

3.Diseno

Durante el disefio, se planifica la estructura y la arquitectura del software.
Esto implica determinar como se organizaran los componentes del sistema
para lograr un funcionamiento eficiente. Durante esta fase, donde ya
sabemos lo que hay que hacer, el siguiente paso es definir como hacerlo.

Disefo arquitectonico

Consiste en dividir el sistema en partes y establecer las relaciones entre
esta partes, especificando qué hace cada parte. El resultado sera un
modelo funcional-estructural de los requerimientos del sistema global,
dividido en partes.

Este disefio se detalla, parte a parte, resultando en un disefio mucho mas
completo que también establece las relaciones entre las partes.

Seleccion de tecnologias

Las decisiones aqui pueden ser tomadas a lo largo de la la fase de disefio, e
incluyen el seleccionar:

+ Los lenguajes de programacién a usar.

» Frameworks y librerias de mayor relevancia.
» Las arquitecturas a soportar

* Los sistemas de gestion de bases de datos.

+ Tecnologias a emplear.

31

32

Modelado de datos

Se defines las entidades, atributos, atributos clave y relaciones de los datos,
asi como el proceso para acceder, insertar, modificar o borrar esos datos,
junto con las politicas correspondientes. Se busca una estructura eficiente
y coherente que facilite el acceso, la manipulacion y el almacenamiento de
la informacion de acuerdo con los requisitos del sistema.

Interfaz de usuario

Es el disefio de la interfaz de usuario, donde se disefian las pantallas con
las que el usuario usara con la aplicacion. Este disefio buscara una
interactividad intuitiva, de forma que el usuario encuentre facilmente las
funcionalidades que desea emplear en cada momento.

Dentro del disefio de la interfaz estaria la definicién las tareas de usuario .
Estas describen las tareas que un usuario final podra realizar con nuestro
futuro programa. Por ejemplo, el usuario de un programa de edicién
fotografica podria tener la tarea de:

* (1) Cargar imagen
* (2) Seleccionar filtro de imagen
* (3) Modificar valores de filtro

* (4) aplicar filtro.

Disefio del plan de pruebas

Se disefian las pruebas que seran realizada en la fase de pruebas.

4.Codificacion

En esta fase, los programadores escriben el codigo fuente del software

basandose en los disefios previamente establecidos. Se siguen estandares
de codificacion para asegurar la coherencia y la calidad del codigo. Las
caracteristicas deseables de todo cédigo son:

* Modularidad: que esté dividido en trozos mas pequefios.

+ Correccion: que haga lo que se le pide realmente.

* Facil de leer: para facilitar su desarrollo y mantenimiento futuro.

+ Eficiencia: que haga un buen uso de los recursos.

 Portabilidad: que se pueda implementar en cualquier equipo.
Durante esta fase, el cédigo creado por los desarrolladores se llama c6digo

fuente, que es un texto legible por un humano, pero no es ejecutable por el
sistema informatico.

Compiladores e intérpretes

Una vez tenemos un codigo fuente, tendremos que realizar un proceso
para que el codigo fuente sea ejecutado. Existen varias formas:

- Lenguajes compilados. Un programa llamado compilador
convierte cada uno de los ficheros del cédigo fuente en cédigo
objeto. Luego, otro programa llamado enlazador los une,
empleando librerias del sistema operativo si es necesario, para
generar un programa ejecutable. A partir de ahora, para ejecutar
el programa, ya no seran necesarios ni el compilador ni el
enlazador, solo el programa ejecutable resultante.

Compilador Enlazador

Libreria del SO A"

33

34

Cédigo fuente |=»

Codigo Objeto = | Cbdigo ejecutable

Cédigo fuente | =»

Codigo Objeto 7

- Lenguajes interpretados. Un programa llamado intérprete,
lee las instrucciones del cédigo fuente y las va ejecutando. Cada

vez que queramos ejecutar el programa deberemos usar el

intérprete. Este método es mas lento que el anterior, porque se

deben ir traduciendo las instrucciones antes de poder ejecutarlas.

Traductor
Cddigo fuente g Lenguaje
Codigo fuente Yo (Llamada)

« Mdquina virtual. Este método, usado por lenguajes como Java
o0 C#, es un caso especial del anterior. El cddigo se compila
generando un cédigo intermedio (también llamado bytecode),
que luego es interpretado por el intérprete. Aunque este método
no es tan eficiente como el primero (la compilacién pura), pero si
qgue es mas eficiente que el anterior, pues el cddigo intermedio es
mas competo y estd optimizado para ser interpretado de la forma

mas rapida posible.

Compilador

Traductor

Cédigo fuente |=»

Cdodigo intermedio |=»| Maquina virtual

Cédigo fuente | &

Frameworks y librerias

Las librerias son trozos de cédigo fuente, bien encapsulados, que realizan
una funcién concreta, que seran llamados por nuestro cédigo para realizar
esas funciones. Por ejemplo, una libreria puede encargase de encriptar un
fichero, de forma que le pasamos un fichero y una clave, y nos devuelve el
fichero encriptado. Es muy comun usar librerias realizados por terceros, de
forma que nosotros nos ahorramos de desarrollar todo lo que la libreria
hace.

Los lenguajes de programacion proporcionan una serie de librerias del
lenguaje, que estan disponibles en el lenguaje. Por ejemplo, en java
tenemos la libreria java.sgl, que contiene las diversas clases e interfaces
para comunicarse con bases de datos relacionales.

Los frameworks, tales como Angular, Spring o ASP.NET son estructuras mas
completas que proporcionan todo un conjunto de funcionalidades ya listas
para usar en nuestros programas. En un framework, el flujo de trabajo lo
dicta él, de forma que el codigo del desarrollador debe adaptarse a él.

Un problema de los frameworks suele ser la dependencia de estas
funcionalidades y que es posible que su uso haga que nuestro programa
final necesite mas recursos. Algunos frameworks poseen una interfaz
propia que facilita ain mas el desarrollo, tales como Unity, y Unreal Engine.

Tipos de lenguajes

En esta fase también se deciden los lenguajes a usar. Se pueden realizar
muchas clasificaciones de los lenguajes de programacion. Algunas de ellas
pueden ser:

+ Alto nivel, medio nivel o bajo nivel. Los de alto nivel (Java, C#, etc.)
son mas potentes y requieren menos esfuerzo de desarrollo, pero
son menos eficientes. Los de bajo nivel (ensamblador) son muy
cercanos a la maquina. El nivel intermedio (C), consiguen un
compromiso entre ambos.

35

36

Estructurados y orientados a objeto. Los orientados a objetos
(Java) permiten encapsular c6digo en objetos y ayudan a que el
c6digo sea modular. Los estructurados solo puede llegar a
implementar funciones para ello.

Visuales vs textuales. Los textuales (Java, C, C++, C#, etc.) requiren
gue se escriba texto para realizar el cédigo. Los visuales (Microbit,
Scratch) disponen de una interfaz en la que se van juntando
bloques para realizar el cédigo.

Lenguajes de marcas (XML, HTML, JSON). Definen un programa o
un contenido con texto que posee marcas para estructurar o
identificar los elementos.

Lenguajes declarativos (SQL). No se detallan los pasos a seguir,
sino el resultado deseado.

5.Prueba

La fase de prueba es esencial para garantizar que el software funcione
correctamente. Se disefian casos de prueba para verificar que el software
cumple con los requisitos y se identifican y corrigen los errores antes de la
entrega al cliente.

Normalmente, éstas se realizan sobre un conjunto de datos de prueba, que
consisten en un conjunto seleccionado y predefinido de datos limite a los
que la aplicacion es sometida.

La realizacién de pruebas es imprescindible para asegurar la validacion y
verificacion del software construido. Entre todas las pruebas que se
efectdan sobre el software podemos distinguir basicamente:

« Pruebas unitarias. Consisten en probar, una a una, las
diferentes partes de software y comprobar su funcionamiento
(por separado, de manera independiente). JUnit es el entorno de
pruebas para Java.

« Pruebas de Integracion. Se realizan una vez que se han
realizado con éxito las pruebas unitarias y consistirdn en
comprobar el funcionamiento del sistema completo: con todas
sus partes interrelacionadas.

La prueba final se denomina cominmente Beta Test, ésta se realiza sobre
el entorno de produccién donde el software va a ser utilizado por el cliente
(a ser posible, en los equipos del cliente y bajo un funcionamiento normal
de su empresa).

37

38

6 .Mantenimiento

Explotacion
La explotacion es la momento en que los usuarios finales conocen la

aplicacién y comienzan a utilizarla. La explotacién es la instalacién, puesta a
punto y funcionamiento de la aplicacién en el equipo final del cliente.

En el proceso de instalacion, los programas son transferidos al computador
del usuario cliente y posteriormente configurados y verificados. Es
recomendable que los futuros clientes estén presentes en este momento e
irles comentando cémo se va planteando la instalaciéon. En este momento,
se suelen llevan a cabo las Beta Test, que son las Ultimas pruebas que se
realizan en los propios equipos del cliente y bajo cargas normales de
trabajo.

Una vez instalada, pasamos a la fase de configuracion. En ella, asignamos
los parametros de funcionamiento normal de la empresa y probamos que
la aplicacién es operativa.

También puede ocurrir que la configuracién la realicen los propios usuarios
finales, siempre y cuando les hayamos dado previamente la guia de
instalacion. Y también, si la aplicacion es mas sencilla, podemos programar
la configuracion de manera que se realice automaticamente tras instalarla.
(Si el software es "a medida", lo mas aconsejable es que la hagan aquellos
que la han fabricado).

Una vez se ha configurado, el siguiente y Ultimo paso es la fase de
produccién normal. La aplicacién pasa a manos de los usuarios finales y se
da comienzo a la explotacion del software.

Mantenimiento

Después de la implementacion, el mantenimiento implica realizar
actualizaciones, correcciones de errores y mejoras en el software para
mantenerlo actualizado y funcionando de manera 6ptima a lo largo del
tiempo.

En cualquier otro sector laboral esto es asi, pero el caso de la construccién
de software es muy diferente. La etapa de mantenimiento es la mas larga
de todo el ciclo de vida del software. Por su naturaleza, el software es
cambiante y debera actualizarse y evolucionar con el tiempo.

Deberd ir adaptandose de forma paralela a las mejoras del hardware en el
mercado y afrontar situaciones nuevas que no existian cuando el software
se construy6. Ademds, siempre surgen errores que habra que ir
corrigiendo y nuevas versiones del producto mejores que las anteriores.

Por todo ello, se pacta con el cliente un servicio de mantenimiento de la
aplicacion (que también tendra un coste temporal y econémico).

El mantenimiento se define como el proceso de control, mejora y
optimizacion del software. Su duracién es la mayor en todo el ciclo de vida
del software, ya que también comprende las actualizaciones y evoluciones
futuras del mismo. Los tipos de cambios que hacen necesario el
mantenimiento del software son los siguientes:

* Perfectivos: Para mejorar la funcionalidad del software.

« Evolutivos: El cliente tendrd en el futuro nuevas necesidades. Por
tanto, seran necesarias modificaciones, expansiones o
eliminaciones de codigo.

» Adaptativos: Modificaciones, actualizaciones... para adaptarse a
las nuevas tendencias del mercado, a nuevos componentes
hardware, etc.

 Correctivos: La aplicacion tendra errores en el futuro (seria
utépico pensar lo contrario).

39

40

7 .Documentacion

Se crea documentacion que describe el funcionamiento y el uso del
software. Esto incluye manuales de usuario, descripciones técnicas y
registros de cambios para futuras referencias. Es necesaria para poder dar
toda la informacién a los usuarios de nuestro software y poder acometer
futuras revisiones del proyecto.

La documentacion no es una fase en si, sino que se desarrolla durante el
resto de fases. Algunos resultados de la documentacién son:

* Guia Técnica: Aspectos técnicos de las etapas anteriores (analisis,
disefio, implementacion, prueba y mantenimiento), para facilitar
el mantenimiento a los propios desarrolladores..

* Guia de uso: Guia para el usuario final de cémo utilizar la
aplicacién.

* Guia de instalacion: Los requisitos de la aplicacién y cémo
instalarla y ponerla a funcionar, para el administrador y/o el
usuario final.

41

8.Ciclos de vida software

Los ciclos de vida del software son modelos o enfoques que describen
como se desarrolla y se mantiene el software a lo largo de su ciclo de vida.
Cada ciclo de vida tiene sus propias fases y actividades especificas.

Modelo en Cascada

El modelo en cascada es uno de los ciclos de vida
mas antiguos y lineales. Las fases se ejecutan en |
secuencia, y cada una debe completarse antes de |
pasar a la siguiente. Tan solo es adecuado para |
|
|

Analisis

Disefio

proyectos con requisitos muy bien definidos, y
que se prevean los minimos cambios, algo que

Prueba

|
|
Implementacion |
|
Mantenimiento |

no suele suceder, salvo en los proyectos mas
pequefios, por lo que se usa muy poco.

Modelo en Espiral

El modelo en espiral incorpora iteraciones
y se enfoca en la gestién de riesgos (el
equipo debe ser tener la experiencia
suficiente para evaluarlos). Es un ciclo de

vida flexible y adaptativo, para grandes
sistemas complejos que presentan
diversos riesgos, como el software de Planificacion ~ Desarrollo

Determinar Evaluar
Objetivos riesgos

control de un avién comercial. También es y prueba

usado en proyectos experimentales y de
investigacion.

El desarrollo progresa a través de ciclos repetidos, cada uno de los cuales
permite la incorporacion de mejoras y cambios.

Desarrollo en Espiral Incremental: Es similar al modelo en espiral,
pero se enfoca en entregar incrementos funcionales del software en cada
iteracion. Cada iteracidon agrega nuevas capacidades al sistema, lo que
permite una entrega temprana de funcionalidad.

Desarrollo Agil

Los métodos agiles, como Scrum y Kanban, se centran en la flexibilidad y la
colaboracién continua. Los proyectos se dividen en iteraciones cortas
llamadas “sprints” y se adaptan a medida que se avanza. La priorizacién de
las caracteristicas y la retroalimentacién constante son fundamentales.

En el desarrollo agil, el proceso se organiza en ciclos cortos llamados
sprints (de 1 a 4 semanas) y suele seguir estos pasos clave:

Planificaciéon: Se identifican los requisitos y se priorizan en una
lista de trabajo (backlog). Se selecciona una o varias
caracteristicas, que son grupos de requisitos.

» Divisibn en tareas: Las caracteristicas se dividen en tareas
pequefias para completar en el sprint.

+ Desarrollo: El equipo trabaja en las tareas, revisando el progreso
en reuniones diarias.

* Pruebas y validacién: Se realizan pruebas continuas para asegurar
la calidad.

* Revision del sprint: Se presenta el trabajo completado y se obtiene
retroalimentacion.

* Retrospectiva: El equipo evalla el proceso y mejora para el
siguiente sprint.

* Entrega continua: Se liberan versiones funcionales del software de
manera frecuente.

Este ciclo se repite, permitiendo adaptarse rapidamente a cambios y
mejorar el producto de forma continua.

43

44

Timeboxing: En metodologias agiles es posbile usar el la técnica de
Desarrollo en Espacios de Tiempo, o Timeboxing, que se basa en la
asignacion de un tiempo fijo para cada fase del proyecto. El desarrollo se
adapta a ese marco de tiempo y los recursos disponibles. Se enfoca en la
entrega de incrementos de funcionalidad de manera regular.

Modelo en V

El modelo V ((Validacién vy

Verificacién)) refleja la relacién Ingenieria o Validacién
entre las fases de desarrollo y Requisitos sistema
prueba. Cada fase de desarrollo Disefio del | o, |Verificacion
tiene una fase de prueba sistema del sistema
correspondiente. Las pruebas se Disefio del | «, | Verificacion
realizan para verificar que cada software del software
etapa cumple con los requisitos Codificacién

y para validar que el producto

final satisface las necesidades

del cliente.

Modelo RAD

El Desarrollo Rapido de Aplicaciones se enfoca en la rapida creacién de
prototipos y la iteracién continua. Se utiliza cuando los requisitos no estan
bien definidos y se busca una entrega rapida. Se construyen prototipos
para refinar los requisitos antes de la implementacién final.

9.Herramientas

En la practica, para llevar a cabo varias de las etapas vistas en el punto
anterior contamos con herramientas informaticas, cuya finalidad principal
es automatizar las tareas y ganar fiabilidad y tiempo. Esto nos va a permitir
centrarnos en los requerimientos del sistema y el analisis del mismo, que
son las causas principales de los fallos del software.

Las herramientas CASE son un conjunto de aplicaciones que se utilizan en
el desarrollo de software con el objetivo de reducir costes y tiempo del
proceso, mejorando por tanto la productividad del proceso.

El desarrollo rapido de aplicaciones o RAD es un proceso de desarrollo de
software que comprende el desarrollo iterativo, la construccién de
prototipos y el uso de utilidades CASE.

Hoy en dia se suele utilizar para referirnos al desarrollo rapido de
interfaces graficas de usuario o entornos de desarrollo integrado
completos. La tecnologia CASE trata de automatizar las fases del desarrollo
de software para que mejore la calidad del proceso y del resultado final. En
concreto, estas herramientas permiten:

» Mejorar la planificacion del proyecto.

+ Darle agilidad al proceso.

» Poder reutilizar partes del software en proyectos futuros.
* Hacer que las aplicaciones respondan a estandares.

* Mejorar la tarea del mantenimiento de los programas.

» Mejorar el proceso de desarrollo, al permitir visualizar las fases de
forma grafica.

45

46

Clasificacion
Normalmente, las herramientas CASE se clasifican en funcion de las fases
del ciclo de vida del software en la que ofrecen ayuda:
» U-CASE: ofrece ayuda en las fases de planificacién y andlisis de
requisitos.
» M-CASE: ofrece ayuda en analisis y disefio.

» L-CASE: ayuda en la programacién del software, detecciéon de
errores del cédigo, depuracién de programas y pruebas y en la
generacion de la documentacion del proyecto.

Ejemplos de herramientas CASE libres son ArgoUML, Use Case Maker y
ObjectBuilder.

Ej. 4: ;Cudles de estas son herramientas del desarrollo software?:

Compilador, editor de texto, entorno de pruebas, Programa de
diagramas UML.

Solucidn: todas ellas son herramientas del desarrollo, ya que todas son
empleadas en éste.

UNIDAD DIDACTICA 3:

Casos de uso

1.Casos de uso

Los casos de uso especifican cada uno de los comportamientos de nuestro

sistema: abarcan, por tanto los requisitos funcionales del sistema. Cada
caso de uso es, fundamentalmente, una lista de pasos que detallan el
comportamiento de una funcionalidad del sistema.

Los casos de uso (y los diagramas de casos de uso que veremos mas
adelante) se crean en la primera fase del desarrollo del software, la fase de
analisis. Su principal funcion es dirigir el proceso de creacién del software,
definiendo qué se espera de dicho software. Los diagramas de casos de
uso se emplearan luego para crear, durante la fase de disefio, los
diagramas de clases.

La ventaja principal de los casos de uso es su facilidad para ser
interpretados, lo que hace que sean especialmente dutiles en la
comunicacion entre desarrolladores entre si y entre éstos y el cliente. Han
de ser definidos, eso si, con cuidado y precisién, de forma detallada, pues
cualquier caracteristica del software que no se consiga tener en cuenta en
los casos de uso ocasionard inconsistencias mas adelante.

Actores

Es cualquier entidad externa que interactia con la aplicacion. Los actores
son las entidades que desencadenan los casos de uso y participan en las
interacciones con el sistema para lograr ciertos objetivos.

Los actores pueden ser personas, otros sistemas, dispositivos o incluso
otros programas. Cada actor tiene un papel especifico y puede
desempefiar un papel activo al iniciar o participar en un caso de uso, o un
papel mas pasivo al recibir los resultados de las interacciones.

Por ejemplo, en un sistema de gestion de biblioteca, los actores podrian ser
"bibliotecario"”, "estudiante" y "sistema de inventario". Cada uno de estos

49

50

actores desempefia un papel diferente y participa en casos de uso
especificos, como "prestar libro", "devolver libro" o "actualizar inventario".
La identificacién clara de los actores y sus roles es fundamental para
comprender y modelar los requisitos del sistema en el andlisis de casos de
uso.

Flujo principal, descripcion y notas
En el flujo principal, se detallan los pasos habituales que tanto los actores

como el sistema realizan para que se lleve a cabo la funcionalidad que se
esta describiendo.

Visualizar fecha

Actores: Usuario

Descripcién:
El usuario visualiza la fecha del sistema.

Flujo Principal:
1. El usuario selecciona la opcién de visualizar fecha.
2. Elsistema muestra la fecha del sistema.

Notas:
El sistema trabajara con la hora local.

El caso de uso anterior, es posible que el disefio final de la aplicacion no
tenga una “opcién de mostrar lista de chats activos”, sino que se muestre la
lista de chats directamente al iniciar la aplicaciéon: es algo que aun no
sabemos como sera, pero en el caso de uso debemos especificar que
seleccionamos esa opcion.

Por lo general, en especial en estos primeros ejemplos, los pasos del flujo
principal alternaran entre una accién del usuario y una del sistema. Solo
cuando un paso sea muy complejo, se dividira en varios paso

Se suele incluirse una descripcién del caso de uso, que resumira lo que
realiza dicho caso de uso.

Cuando sea necesario, habran unas notas , que podran ser sobre el caso
de uso en general, sobre alguno de los puntos del flujo principal o de los
alternativos, etcétera. En muchas ocasiones, estas notas adicionales
surgen de los requisitos no funcionales.

Flujos alternativos

Los flujos alternativos describen las excepciones al comportamiento del
flujo principal, de forma que reemplazan al paso con el que comparten
numero en caso de que ocurra algin suceso: en el caso de uso siguiente, si
no hubieran chats activos, se mostraria el paso 2a, en vez de el 2.

Hay que destacar que, en el caso de uso no se incluyen los errores, tales

como que el usuario haya introducido mal los datos que se pidan, que no
haya conexion a Internet, etcétera.

Visualizar Chat

Actores: Usuario

Descripcion:
Interaccion entre el usuario y el sistema para visualizar un chat activo.

Flujo Principal:
1. El usuario selecciona la opcién de mostrar lista de chats activos.
2. Elsistema muestra la lista de chats activos
3. Elusuario selecciona un chat
4. El sistema muestra el chat seleccionado.

Flujo secundario:
2a. Si no existen chats activos, el sistema muestra un mensaje
indicando que no hay chats para mostrar.

Ej. 1: En un sistema que es un portal de noticias, realiza un caso de
uso, llamado Leer Noticia, enla que un usuario seleccionay accede a
una noticia para leerla.

51

52

Ej. 2: Realiza un caso de uso, llamado Buscar Producto, en la que
un cliente busca un producto que se corresponda a un criterio que
dicho cliente desee.

Precondiciones y postcondiciones

Las precondiciones son condiciones que deben cumplrse antes de que
un caso de uso o una funcién comiencen a ejecutarse. En un caso de uso,
las precondiciones pueden incluir cosas como la autenticaciéon del usuario,
el estado del sistema, o cualquier otro requisito necesario para que el caso
de uso se desarrolle adecuadamente.

Las postcondiciones son condiciones que deben ser verdaderas
después de que un caso de uso o una funcién se ha ejecutado
correctamente. Son los resultados esperados o los cambios de estado que
se supone que ocurren como consecuencia de la ejecucién de la accion
principal.

Comprar Moneda Virtual

Actores: Usuario, Banco

Descripcion:
Proceso de un cliente al realizar un pago con tarjeta a través de un
sistema en linea, donde el banco gestiona la transaccion.

Precondiciones:
El usuario debe haberse identificado en el sistema.

Flujo Principal:
1. El usuario selecciona la cantidad de monedas a comprar.
2. Elsistema solicita la informacién de la tarjeta de crédito.
3. Elusuario proporciona los detalles de la tarjeta de crédito.
4. Elsistema envia la informacién de la transaccion al banco para su
procesamiento y muestra un mensaje con el resultado de la
operacion.

Flujo secundario:
4a. Si el banco rechaza la transaccion, el sistema muestra un mensaje

de error al cliente y vuelve al punto 2.

Postcondiciones:
La cantidad de moneda virtual seleccionada sera afiadida a la cuenta del
usuario.

Notas adicionales:
* El usuario proporciona los detalles de la tarjeta de crédito.
+ El sistema garantiza la seguridad de la informacion de la tarjeta
mediante la implementacion de estandares de seguridad.
* En caso de rechazo del pago, se proporcionara informacion clara
sobre el motivo y las acciones a seguir.

Ej.3: Crea el caso de uso Crear tarea, en la que se creard y
registrara una nueva tarea en el sistema. Un usuario deberd estar
identificado en el sistema para crear la tarea.

Ej. 4: Respecto a una tienda virtual, crea el caso de uso Comprar
productos, en la que el usuario seleccionara uno o varios productos y
luego procedera a pagarlos, especificando la direccién de envio.

Desglosar un paso

Es posible que un flujo principal, o en el alternativo, una tarea sea algo
compleja o que conlleve un numero de pasos, para ello, se emplea una
numeracion que empieza por el paso a desglosar seguido de un punto:

Cambiar foto de perfil

Actores: Usuario

Descripcién:
El usuario cambiara su foto de perfil con una nueva captura fotografica.

Flujo Principal:
1. El usuario selecciona "Cambiar foto de perfil".
2. Elsistema muestra una vista de la camara frontal.
3. Elusuario realiza una fotografia.
3.1.El sistema le indica al usuario que debe encuadrar su cara.

53

54

3.1.El usuario encuadra su cara en la vista de la pantalla.
3.1.Cuando es sistema detecte un encuadro correcto, lo indicara al
usuario.
3.3.El usuario podra seguir moviendo el encuadre
3.4. Estando el encuadre como el valido, el usuario pulsara “tomar
foto".
4. Elsistema tomara la foto y la establecera como foto de perfil.

Postcondiciones:

La foto de perfil habra cambiado.

Ej. 5: Realiza un caso de uso Silenciar notificaciones. El pasoen
que el usuario selecciona la opcién de “escoger opci6on” es un poco
compleja, pues tendra que elegir primero entre varias alternativas (que
podria ser algo como "1 hora", "8 horas", o "Permanente"). Tras ello, el
usuario debera confirmar su eleccién (si respondiese que no, se cancela
la tarea, por lo que no es necesario indicar ese hecho de seleccionar
que no en el caso de uso).

Repeticiones y cambios de paso

También es posible que se produzca saltos entre los pasos, de forma que
se indicara el paso al que se debe de saltar:

Leer noticias del dia

Actores: Usuario

Descripcion:
El usuario leera las noticias del dia que desee.

Flujo Principal:
1. El usuario selecciona la opcién de “leer noticias del dia".
2. El sistema muestra las noticias del dia.
3. Elusuario lee una noticia.
3.1.El usuario selecciona una noticia que desee, o bien elige “terminar”,
en cuyo caso pasa al punto 4.
3.2.El sistema muestra la noticia seleccionada.

3.3.El usuario lee la noticia.
3.4. El usuario selecciona “volver”, y se pasa al punto 2.
4. Elsistema cierra la lista de noticias.

Flujo secundario:
3.3a. El usuario selecciona “ver mas tarde”.

Postcondiciones:
Las noticias seleccionadas como “ver mas tarde” se afiadiran a la lista de
“noticias guardadas”.

Ej. 6: Cambia el caso de uso de Silenciar notificaciones‘,
Realizado anteriormente, de forma que, esta vez, cuando el usuario
responda que no a la confirmacién, se vuelva a la seleccion de
alternativas.

Ej. 7: Crea el caso de uso Verificar email. El usuario introducira
un email y el sistema enviara un correo de verificacion con un codigo. El
usuario deberd introducir el c6digo o bien solicitar que se reenvie un
c6digo nuevo. Observa que el flujo principal trata de verificar el email,
de forma que el no conseguirlo se considera una cancelacién de la tarea
debido a un error. En notas, se establecera que el uso repetido de esta
funcién estara limitado, por temas de seguridad.

55

56

2.Diagrama frontera

El diagrama frontera incluye todos los casos de uso genéricos del sistema,
enmarcados con un recuadro, dejando a los actores fuera.

Reloj Digital

—

e

Ajustar Visualizacion

Usuario

Hay que recordar que existen actores primarios y secundarios, ambos
deben de representarse en el diagrama frontera (a menudo los actores
primarios se dejan a la izquierda y los secundarios a la derecha). En el
diagrama siguiente, se modela un portal de ventas de juegos de mesa en
formato pdf muy simple, que no requiere registro ni identificacion:

Venta juegos en pdf

Ver detalle de juego

Client // i
ente Entidad pago

Ej. 8: Crea el diagrama frontera de un sistema de notas (textos/notas
de recordatorio). Un usuario podra ver la lista de notas ya creadas, crear
nuevas notas, editarlas y borrarlas.

Obviamente, el sistema podra tener varios actores principales. El siguiente
es un sistema en el que el cliente podra crear una incidencia, mientras que
un técnico podrd ver las incidencias, y también podrd resolver una
incidencia.

Inicidencias

Ver incidencias
Resolver Incidencia

—
Crear incidencia

NN

Técnico

Cliente

Ej. 9: Crea un diagrama frontera de una aplicacién en la que hay dos
tipos de usuarios, el usuario normal y el usuario de pago. El usuario
podra acceder a “generar créditos con publicidad”, y el usuario de pago
podra “comprar moneda virtual”. Ambos usuarios podran realizar la
tarea de “ver pelicula”.

Ej. 10: Crea un diagrama frontera de un teléfono, donde un usuario
podra realizar llamadas (con el nUmero de teléfono: el sistema no posee
agenda) y podra también recibir llamadas.

57

58

3.Relaciones

Interaccion o asociacion.

La asociacion es el enlace entre actor y los casos de uso. La asociacion se
representa con un linea continua entre el actor y el caso de uso. Por
ejemplo, en el diagrama frontera de Venta de juego en pdf, descrito en el
apartado anterior, existen cuatro asociaciones, una entre Comprar juego y
Entidad de pago,y otras tres entre Cliente ‘ y cada uno de los tres casos
de uso.

Generalizacion o especializacion

La generalizacién/especializaciéon ocurre entre actores, de forma que uno o
varios actores pueden interactuar con los casos de uso de la clase superior
y, ademas, tienen otras interacciones.

Brainstorm

e

Crear Brainstorm

Cerrar Brainstorm

Integrante

A

/

p—

Lider

En el caso frontera anterior tenemos un integrante de un sistema de
Brainstorming, que puede enviar una idea al grupo de Brainstorm. El lider,
ademas de ser un participante, pudiendo también enviar ideas, es capaz de
realizar otras acciones. Todo lider es un participante, pero no todos los
participantes son lideres.

Ej. 11: Crea un diagrama frontera de un tablén de anuncios interno.
En el tablén de anuncios, los usuarios pueden enviar mensajes,
mientras que el administrador también puede borrarlos. El sistema
identifica al administrador usando servicios en red, por lo que ni
usuarios ni administrador tienen que identificarse o registrarse.

Ej. 12: Crea un diagrama frontera de una web de registro. Los
poseedores de una propiedad (piso, casa, chalet, etc.) podran inscribir
su propiedad. Los que sean propietarios de una vivienda que no sea
unifamiliar (piso y similares), también podra especificar division
(escalera, niUmero, puerta, etc.).

Por otra parte, los inquilinos podran también registrar la propiedad en
la que vivan. Los inquilinos de una de una vivienda que no sea
unifamiliar (piso y similares), también podra especificar division
(escalera, numero, puerta, etc.).

Es posible que varios actores hereden de un mismo actor, pero no se
permite la multiherencia: en ese caso se crea un actor nuevo con las
correspondientes asociaciones que sean necesarias.

Lo siguiente es un sistema interno (sin identificacién ni registro) en el que
todos los trabajadores pueden entrar y solicitar el periodo de vacaciones.
Los responsables de ventas pueden también registrar periodos de alta
demanda, los capataces pueden registrar dias de incidencia, y los
responsables del sindicato pueden registrar dias de patronazgo.
Finalmente, los directivos pueden hacer todo lo anterior, salvo los dias de
patronazgo.

59

Trabajador

Vacaciones

Solicitar Vacaciones

Establecer patronazgo

Establecer dia de Incidencia

A

Directivo

tEstablecer periodo
de alta demanda

\

Resp. sindicato

Capataz Resp. ventas

Observa que una persona fisica podria ser, a la vez, un capataz y
sindicalista, o capataz y responsable de ventas, o capataz sindicalista, pero
los perfiles son distintos.

Ej. 13: Una aplicacion en la entrada de un evento te pide que
escanees tu ticket para dejarte pasar. Los usuarios que tengan una
suscripcion podran usar ticket o bien su tarjeta de socio y podran,
ademas, elegir un asiento en el auditorio general si asi lo desean. Los
usuarios miembros VIP podran reservar un asiento en tribuna.

También hay artistas que tienen acceso Unicamente a una segunda
puerta, hacia los camerinos, y tendradn que registrar sus datos para
poder entrar (no usan ticket), tras lo cual el sistema les informara del
numero de camerino. Por Ultimo los artistas invitados (artistas
famosos) pueden entrar a todos lados.

La compra y generacion de entradas y la gestion de clientes es realizada
por una empresa de “ticketing” externa. Nuestro sistema, cada vez que
escanea un ticket, consulta a una web que la empresa externa tiene a
nuestra disposicion.

4.Inclusion

La inclusion se produce cuando un caso de uso principal depende de otro
para completar su funcionalidad o cumplir con sus precondiciones.

La inclusién se representa con una flecha discontinua con la palabra
include, que empieza en el caso de uso que incluye y se dirige hacia el caso
de uso incluido. Existen tres casos en los que se emplea la inclusion.

Precondicion

El primero es que el caso de uso incluido tenga una precondicion que se
realiza a través de otro caso de uso. En el ejemplo siguiente, tanto cliente
como empleado deben estar identificados en el sistema para poder realizar
los casos de uso de Comprar Impresion y Procesar Envio respectivamente.
Observa que el tanto el caso de uso incluyente como el caso de uso
incluido tienen sus debidas asociaciones a sus respectivos actores:

Impresién online

Comprar Impresion

\ \Jinclude}

{include}

~

Procesar envio
Empleado

Como deciamos, estas inclusiones se reflejaran en los casos de uso en las
precondiciones de Comprar Impresién y de Procesar Envio. Por
ejemplo:

61

62

Comprar impresion

Actores: Cliente

Descripcién:
El usuario realiza la compra de una impresién

Precondiciones: El cliente debe estar identificado.

Ej. 14: Un sistema de identificacion, el cual se halla en un sistema
informatico empotrado (un USB seguro), permite la identificacion
por biometria y la 1identificacién por datos personales. En
ambos casos, sin embargo, es necesario que el usuario haya
desbloqueado el dispositivo. También es necesario que el usuario

haya registrado el dispositivo.
Realiza el diagrama frontera y cada uno de los 4 casos de uso. Para el
flujo principal de todos ellos, asume un flujo muy sencillo del estilo:

1. El usuario selecciona la opcién de identificarse por datos personales
2. El sistema pide los datos personales.
3. El usuario introduce los datos personales.

Dividir un proceso complejos

El segundo tipo de inclusiéon es cuando un caso de uso tiene cierto paso o
conjunto de pasos no ftriviales, que constituyan una funcionalidad aparte
suficientemente diferenciada. Por ejemplo:

Recorte de Encimeras

4

..-/ {Include}

include}

Calcular
Corte

Especificar

Forma

Recortar encimera

Actores: Obrero

Descripcién:
El obrero procede a definir las formas necesarias que desea se recorten
en la tabla para encimera, y el sistema calcula la mejor forma de
hacerlo.

Flujo Principal:
1. El obrero selecciona la opcién de Recortar encimera.
2. El obrero afiade una o varias formas:
2.1.El obrero selecciona, tantas veces como desee “Afiadir una nueva
forma”, y el sistema iniciard el caso de uso Especificar Forma,
anadiendo la nueva forma a la lista de formas.
2.2. El obrero puede seleccionar “Borrar forma”, y el sistema borrara la
forma seleccionada.
2.3. Si no hay ninguna forma en la lista, ve al punto 2.1
2.3. El obrero podra volver al punto 2.1 o al punto 2.2
4. El obrero selecciona “Calcular corte”.
5. Elsistema inicia el caso de uso Calcular Corte.
6. Elsistema guarda y muestra al usuario el disefio de corte calculado.

Flujo Secundario:
6a. Silas formas no caben en la tabla base, notifica al usuario y vuelve al
punto 2.

Postcondiciones: El sistema ha guardado el disefio de corte.

Ej. 15: Un sistema de gestion financiera permite realizar diversas
operaciones al cliente. Una de ellas es realizar un analisis
financiero. Este caso de uso necesita hacer un recopilado de
datos, un analisis de mercado vy, finalmente, una creacién de
diagramas financileros . El andlisis de mercado requiere, a su vez, un

recopilado de oportunidades financieras.

Realizar una tarea comun

Por ultimo, cuando un conjunto de pasos no triviales se realiza en distintos
casos de uso, se aislan dichos pasos en un caso de uso aparte.

63

64

Playback

Realizar
playback

Comprobar
playback

Jinclude}
~

Calibrar sonido

“{include}

Ej. 16: Unsistema de scripting ejecuta pequefios programas (también

Hanwadoskscﬂpts)

verificar script.

scripts.

El sistema permite ejecutar scripts, guardar
scripts 'y modificar

En todos ellos se realiza un

5.Extension

La extension es similar a la inclusién, a excepcién de que el caso de uso que
extiende no siempre empleara al caso de uso extendido. El caso mas tipico
es el del registro, donde al identificarse, es posible que el usuario realice el
registro, o bien puede que se identifique directamente:

Tienda virtual simple

3 \{extends}

Identicarse

-,

N Z _{include}

La invocacién de un caso de uso extendido dentro de otro, se realiza de

forma similar a la inclusion.

Ej. 17: Crea un diagrama frontera de una aplicacién que es un lector
de noticias. Un usuario podra Leer Noticias estando o no
identificado (con Identificarse), pero solo podra Anadir a
favoritos siesta identificado.

Ej. 18: Crea una diagrama frontera de una mini-tienda virtual, donde
el cliente podra Buscar producto . Si el cliente esta identificado (con
Identiﬁcarse‘y, si fuera necesario, Registrarse) podra, cuando haya
encontrado el producto, Afadir Producto a la Cesta.

Ademas, el usuario identificado podra seleccionar Realizar Compra, la
cual podra o no ocasionar el caso de uso Usar Cupén .

El realizar la compra Invocard siempre, eso si, a Realizar Pago,
empleando un actor externo de Sistema de Pago, y también usara

siempre Introducir datos de envio.

65

66

Finalmente, el usuario podra Ver perfil e Introducir Direccién de
Envio.

6.Resumen y ejercicios

Resumen general de los casos de uso

* Los actores principales son los que realizan las tareas (realizan los
casos de uso), y los secundarios son los que son llamados por el
sistema. Los actores estan comunicados con los casos de uso a
través de relaciones de asociacion (lineas y no flechas).

* Es posible que un actor sea primario en un caso de uso y secundario
en otro. La comunicacién entre los actores fuera del sistema (fuera
de la aplicacién a desarrollar) no se refleja en los diagramas.

 Si de un caso de uso pasamos a otro directamente (ejemplo, si un
usuario va a consultar su perfil pero necesitar estar identificado, y
ello se hace de forma inmediata para luego volver), entonces se
pondra el {include} o el {extends} que corresponda entre ambos
casos de uso. En caso contrario, si el programa no “pasa el control”
directamente al otro caso de uso, entonces no se pone {include} ni
{extends}, aunque haya prerequisito que los relacione.

» El {include} tiene la flecha desde el caso de uso “llamante” hacia el
caso de uso “llamado”, pues lo incluye. El {extend} lo tiene al revés
porque el “llamado” es extendido.

+ La herencia solo es posible entre actores, y solo si el actor hijo puede
hacer todos los casos de uso del padre y puede que alguno mas.
Aun asi, si no hay relacién entre ambos actores (ej: un cliente y un
encargado, ambos de ellos pueden realizar un “cambio de
contrasefa” y luego el cliente puede “consultar perfil”), podria no
haber herencia.

Ej. 19: [1] Una clinica veterinaria almacena datos de contacto de todos
sus clientes, que son introducidos y gestionados por los auxiliares, que
ejercen las funciones administrativas.

[2] También es posible dar de alta a un nuevo animal. Un animal solo
puede pertenecer a un Unico cliente, pero es posible que éste cambie de
duefio. Para animales con la obligacion de estar identificados, al darlo de
alta en el sistema, se comprobara el registro REIAC (Red Espariola de
Identificacion de Animales de Compariia) para saber si el animal esta
correctamente dado de alta.

[3] Cada vez que un veterinario examina un animal, dicha consulta queda
almacenada, con todo los siguiente: (1) los sintomas del animal, (2) las
recetas que se le prescriban, (3) los tratamientos realizados, (4) los
tratamientos y cuidados prescritos. Sifuera necesario, el veterinario podra
ordenar el veterinario el ingreso en clinica, cuya orden quedara también
registrada.

[4] Si un animal queda ingresado en la clinica, el cliente debe ser capaz de
ver, en tiempo real (a través de una camara fija), al animal ingresado,
pudiendo ver también su historial, recetas prescritas 'y
cuidados/comentarios indicados por el veterinario en la consulta o
después.

[5] Mientras se esta tratando al animal ingresado, todas las anteriores son
afiadidas al historial.

[6] La consulta realizada a sus animales, podran ser consultados por el
cliente desde la web.

[7] El cliente podra realizar el pago justo tras realizar la consulta, con la
ayuda de un auxiliar. También puede identificarse en la web para hacerlo
en la siguiente semana.

[8] La identificacién de los clientes en la web se realiza con un usuario y
clave, pero el registro se hace a través de los auxiliares, en la clinica. Los
auxiliares y veterinarios no han de identificarse (ésto se realiza de forma
automatica, pues cada uno usa su propio sistema informatico).

Clinica Veterinaria
Alta de animal

Pago en consulta

Alta de cliente
I{extends}
Cambiar duefio . !

Auxnlar

REIAC

e

=~

Veterinario

Cllente

[1] Este parrafo nos indica un caso de uso llamado Alta de cliente, que es
realizado por un actor llamado Auxiliar . Se considera que es el auxiliar el
que realiza el proceso (habla con el cliente, recibe sus datos por teléfono o
por email, etc.), por lo que, en dicho caso, el cliente no forma parte del caso
uso.

En caso de que el cliente usara la aplicacion a desarrollar (se le enviara un
enlace que tuviera que rellenar, usara una aplicacion nuestra en el mévil, etc.),
entonces el cliente formaria parte del caso de uso, y habria que asociarlo con
una linea, NO con una flecha) al caso de uso.

[2] Nos indica el caso de uso Alta de Animal, con las mismas
consideraciones respecto al cliente que en [1]. En todo caso, podria ser que

tengamos que consultar el sistema externo llamado REIAC, por lo que
enlazamos a ese actor, que seria actor secundario) con el caso de uso.

Si se considerase un caso de uso para hacer la conexion con REIAC (por
ejemplo, Consulta con REIAC), éste caso de uso estaria conectado con
Alta de animal con un {extends} desde Consulta con REIAC el hacia
Alta de animal . Sin embargo, la consulta parece ser mas bien solo un paso
en el flujo secundario de Alta de Animal, por lo que evitamos esta opcion.

En este parrafo también se indica que es posible un cambio de duefio. Serd
un caso de uso realizado por el Auxiliar. En este caso, si el nuevo duefio no
esta en el sistema, tendremos que hacer un Alta de cliente, algo que se
realizard al momento, por lo que supone un {extends} con dicho caso de uso.
Observa que, en caso de que el animal no estuviera dado de alta, entonces no
se podria hacer un cambio de duefio, sino simplemente seria un alta de
animal.

[31 Nos indica que el veterinario realiza el caso de uso Consulta vy, el de
Ingreso en clinica. Este Ultimo siempre se realizard a partir del primero,
pero no siempre. Por tanto hay una relacion de {extends}. Ambas tareas son
iniciadas y realizadas por el Veterinario, por lo que deben estar enlazadas a él
con una asociacion (una linea).

Observa que la direccién de la flecha de {extends} es al contrario que la de
{include}. En este caso, Consulta llama a Ingreso en clinica (aunque no
sea siempre), por lo que la flecha va desde el primero al segundo. Si la
llamada fuera siempre (si siempre que se hace una consulta se ingresara en
clinica, entonces seria un include con la direccion de la flecha al revés.

El sistema no nos indica aqui que un animal deba estar registrado para ser
consultado pero, en vista de lo dicho en [2], es posible que esto sea necesario.
En ese caso, nos planteamos si hay que realizar un {include} o un {extends}
hacia Alta de animal. En principio, son procesos distintos, puesto que la
tarea de Alta de animal puede haberse realizado mucho antes, por lo que
no habria {include} ni {extends}. Existe una dependencia NO funcional que se
materializard en un prerequisito, pero no habra {include} ni {extends}. Si, por

el contrario, se decidiera que la consulta conlleva a un Alta de animal en
ese mismo momento, entonces habria un {extends} desde Alta de Animal a
Consulta .

[4] Se crean los casos de uso Ver animal y Ver historial que son
asociados al actor principal kCliente‘. Todos los objetos de recetas,
tratamientos y demas son objetos, pero no son casos de uso ni actores.
Podran aparecer en los flujos principales y secundarios de los casos de uso,
pero no en el diagrama frontera.

[5] Este parrafo indica que, mientras un animal estd ingresado, se realiza una
consulta, aunque no se aclara cuando sucede esto. No se afiadiria nada al
diagrama, pues el caso de uso Consulta ya esta.[6] Vuelve a incidir en el caso
de Ver historial, que ya estd hecho. Nos queda claro, si no lo estaba ya,
que Ver historial y Ver animal son independientes.

[7] El pago puede realizarse a través de la web directamente por el Cliente ,
por lo que creamos un caso de uso llamada Pago por web, y lo asociamos
con el actor en cuestion. El pago por consulta sera realizado por el auxiliar, y
tiene las mismas consideraciones que Alta de cliente o Alta de animal
respecto a enlazar a Cliente o no.

[8] Finalmente, el Identificarse, por parte del cliente, sera un caso de uso
que sera incluido por los 3 casos de uso relativos a la web. En cuanto al
registro, éste debe ser realizado por el auxiliar. Consideramos que es parte
de Alta de Cliente , Si tuviera entidad para ser un caso de uso aparte,
habria una flecha de {include} desde Alta de animal hacia Registro.

Ej. 20: Realiza el caso de uso Consulta del ejercicio anterior.

En este caso de uso tan solo se trata de que el sistema pida informacion de
las consulta, y el veterinario introduzca los datos de la consulta. Respecto a

estos datos, el enunciado deja claro que hay 4 apartados de informacion
(Sintomas”, “Recetas” “Tratamientos realizados”, “Tratamientos y cuidados
prescritos”). Aunque podriamos haber agrupado todas estas opciones en
algo como pedir o insertar datos de consulta, ya que parece que el
procedimiento de la consulta es algo claro, se han puesto ya esos apartados.
Si esto no fuera asi, mas tarde tendriamos que arreglarlo, lo que seria un
coste en nuestro desarrollo.

Aparte de los 4 apartados citados, existe un quinto que es el de “ingreso en
clinica”. Este apartado se resuelve llamando al caso de uso “Ingreso en
clinica”, que sera el encargado de guardar los datos relativos a ese ingreso.
Observa que, tras la llamada, se sigue el flujo, que en este caso sera volver al
punto 2.1. También seria correcto modelar lo de “ingreso a clinica” usando un
flujo alternativo.

Actores: Veterinario

Descripcion:
El veterinario realizard una consulta a un animal y registrara los
tratamientos y recetas

Flujo Principal:
1. Elveterinario selecciona "Consulta".
2. Seintroducen cada uno de los datos de la consulta.

2.1. El sistema pide que se seleccione entre “Sintomas”, “Recetas”
“Tratamientos realizados”, “Tratamientos y cuidados prescritos”,
“ingreso en clinica” o “Terminar”.

2.2.El veterinario selecciona una de las opciones.

2.3.En caso de que se haya seleccionado “Terminar”, se termina.

2.3.En caso de que se haya seleccionado “Ingreso en clinica, se llamara al
caso de uso “Ingreso en clinica”, y se vuelve a 2.1

2.4.El sistema le pide al veterinario que ingrese la informacion relativa a la
opcion seleccionada

2.5. El veterinario introduce dicha informacion.

2.6. El sistema guarda la informacién y vuelve al punto 2.1

Postcondiciones:
La consulta habra quedado grabada en el sistema

Ej. 21: Un gimnasio quiere implementar un sistema para gestionar
reservas de sus clases.

[1] El registro de clientes es realizado por el encargado del gimnasio en el
propio gimnasio, proporcionando al cliente los datos de acceso a la web
(login y contrasefia). El encargado no ha de identificarse ni registrarse en
el sistema, pero el cliente si tiene que hacerlo para todo lo siguiente.

[2] Los clientes pueden reservar clases pero, para completar la reserva,
deben realizar un pago (un proceso complejo de por si) el cual debe ser
validado por un proveedor externo de pagos.

[3] Los clientes pueden cancelar sus reservas y modificarlas. Puesto que
las clases tienen distintos precios, el modificar una reserva puede
conllevar un pago, al igual que en la reserva. Cancelar una reserva, o
modificar a una reserva hacia una de menor valor supone la pérdida del
dinero correspondiente.

[4] El cambio de contrasefia puede ser realizado por el encargado del
gimnasio, o bien en la web, por el cliente.

Registrar cliente

_Uncludgy

Realizar pago
Encargado | ~

~
Cliente \

Gimnasio

Reasignar contrasefa

L\

Sisterma
de pago

1
Modificar reserva)} = = = ==
Cancelar reserva

[1]1 El registro de clientes se realiza por parte del Encargado. Como el
recabado de datos lo hace el encargado (por lo general, hablando
directamente con el cliente cuando acude al mostrador del gimnasio), este
proceso se hace fuera del sistema y no hay que reflejarlo. Por tanto, creamos
el caso de uso de Registro asociado Unicamente con el Encargado.

Dejamos pendiente la identificacién del cliente para modelarla para mas
tarde.

[2] Los clientes pueden Realizar reserva pero, una parte integral e
indispensable es Realizar pago que, al ser un proceso complejo, posee su
propio caso de uso. Al ser un paso obligado, los conectamos con un {include}.
Como este caso de uso necesita al actor secundario de la plataforma de pago,
lo conectamos con ella: este actor NO estard conectado al caso de uso de
Realizar reserva.

[31 Afadimos los casos de uso Modificar reserva y Cancelar reserva,
realizados por el cliente. En caso del primero, es posible recaer en un pago
adicional, dado que la nueva reserva sea mas cara, por lo que conectamos
con Realizar pago con un extends (si la nueva reserva vale igual o menos,
no se necesitaria ese pago adicional).

[4] Creamos dos casos de usos distintos relativos a cambiar contrasefia, ya
que estimamos que el proceso seria distinto (en uno el cliente debe estar
identificado, etc.). En caso de que fuera el mismo proceso, entonces seria un
mismo caso de uso con ambos conectados a él.

Finalmente, conectamos todas la operaciones del cliente con el caso de uso
Identificarse, que habiamos dejado pendiente en [1].

Ej. 22: Realiza el caso de uso Realizar reserva.

En este caso de uso, realizamos una llamada a otro caso de uso, el de
Realizar Pago. Todo lo relacionado con éste (el pedir datos, la

comunicacién con el actor secundario, etcétera, quedan en su ambito, y no
son incluidos aqui: observa que el Unico actor de este caso de uso es el
cliente, y la grabacion del pago no se realiza aqui.

Realizar reserva

Actores: Cliente

Descripcion:
El cliente selecciona y realiza la reserva de una clase.

Precondiciones: el Cliente debe estar identificado.

Flujo Principal:
1. El veterinario selecciona "Realizar reserva".
2. Elcliente pide al usuario que seleccione una clase de entre las que haya
con plazas libres.
3. Elusuario selecciona una clase.
4. Elsistema llama al caso de uso “Realizar Pago”.
5. El sistema guarda la reserva.

Flujo secundario:
5a. Si el pago no se realiza con éxito, vuelve al punto 2.

Postcondiciones:
La reserva queda guardada.

En cuanto al flujo secundario, aunque trata sobre un error, al producirse ese
error no se cancela la tarea ni se re-intenta en el mismo paso (en vez de ello,
se redirige al punto 2), por lo que se incluye como un flujo secundario en vez
de obviarse.

Ej. 23: Tenemos una aplicacibn web para recomendar libros. El
administrador de la web puede subir los datos de un libro (titulo, autor,
etc.), junto con una valoracién opcional.

Por su parte, los usuarios pueden realizar comentarios del libro, asi como
compartir la pagina web del libro, valoracion y comentarios por red social,
algo que precisa de una entidad externa llamada “Red Social".

Todos los usuarios deben identificarse y, en su caso, registrarse en la web.
El administrador también es capaz de comentar y compartir.

UNIDAD DIDACTICA 4:
1. Diagramas de
Estado

1.Elementos

Los diagramas de estado muestra los distintos estados que un sistema

adopta, y ante qué eventos puede dicho sistema pasar de un estado a otro.
Los diagramas de estado no tienen en cuenta las actividades realizadas por
el sistema, solo ciertos eventos ocurridos que hagan cambiar su estado.

Estado

Nota

Inicio

Representa el inicio de del diagrama de estados. Tan
solo puede existir uno de estos simbolos, y éste
apuntard siempre a un Unico estado, que sera el
estado inicial.

Estado
Indica un estado posible del sistema.

Evento
Un evento es una ocurrencia que puede causar la
transicién del sistema de un estado a otro.

Nota
Permite afadir notas a los distintos elementos del
diagrama de estados.

Finalizacion
Establece el estado final del diagrama de estados, y
representa la conclusién de todos los eventos.

El siguiente diagrama de estados refleja un diagrama de los estados de un

sistema que realiza envios de paquetes, y éstos pueden ser devueltos o no.

Se envia, como maximo, dos veces un paquete: si es devuelto dos veces, se
queda como devuelto, en caso contrario quedard como recibido.

77

78

Recibido

Paquete

recibido
—

tRecibido

Paquete Devuelto
regresado

Un paquete
es enviado
2 veces max.

Devuelto

Paquete
enviado

Paquete
devuelvo

Observa que iniciamos desde un estado de Paquete enviado, puesto que
se considera que siempre se envia, sin excepcion. En este caso, poner un
estado previo del estilo Paquete a enviar no tiene sentido, a menos que
quisiéramos resaltar el evento de envio, o bien si el paquete pudiera no ser
enviado en ciertas circunstancias (direccion desconocida, paquete
defectuoso, etc.).

Otro ejemplo. Tenemos una campana extractora de cocina. Tiene un
botén de apagado (si es pulsado, se apaga todo), un botdn para encender o
apagar la luz y otro para encender o apagar la funcidn extractora:

Boton Apagado

\l/ Boton luz
Botdén apagado
2 < pag

B
AJpagadO, Botdn luz >X

Boton

Batén 1\ Bot6n apagado traccia
extraccion extraccion
Baton Botdn extraccion

apagado
7

x ’ 5. x
Extraccién | Botonluz Luz y Extraccién
x “~Botonluz - x

Ej. 1: Realiza el diagrama de un dial, que
inicialmente estara apuntando al @ El dial puede
ser manipulado para que paseal 1,al 2,al 3y,
finalmente, al 4, y también se podra volver a
posiciones inferiores. En principio, no podria pasar
directamente del 4 y el 0 niviceversa. De cara a
los elementos de inicio o fin, el objetivo es
establecer un valor y, posteriormente, volver al 0 !

¢(Qué cambiaria en el diagrama de estados para
que si se pueda cambiar entreel 0 yel 47

Ej. 2: Realiza un ejercicio que modele una maquina expendedora. La
maquina puede recibir solamente monedas de 0,5€, 1€ y 2€. El Unico
producto que vende es de 2€. La maquina saca el producto en cuanto
tiene dinero suficiente, expulsando el resto de monedas que excedan 2€
¢Es posible que la maquina no pueda devolver el cambio completo?

79

2. .Eventos de salida

Los diagramas de estados son buenos indicadores de cuando un sistema
debe producir un evento de salida. El siguiente diagrama corresponde a un
sistema que va recibiendo unos y ceros y detecta cuando la ha llegado la

marca de fin, compuesta por tres unos seguidos. El estado llamado 111
posee una salida, FINAL :

5 ‘m
T e

Observa, ademas, que en este diagrama hay un evento que, de ocurrir,

lleva al mismo estado.

Ej. 3: Realiza el diagrama de estados de un calentador con
termostato. El calentador comprueba continuamente la temperatura y,
si ésta es mayor que la temperatura establecida, se apaga, en caso
contrario, se enciende.

Afade luego los eventos en los que se cambia la temperatura
establecida.

Ej. 4: Realiza el diagrama de estados de una maquina expendedora.
En dicha maquina, es posible introducir monedas, tras lo cual puede
seleccionarse uno de los productos, y entonces la maquina sacara el
producto y devolver3 la cantidad restante.

Sin embargo, es posible que la cantidad de monedas no sea suficiente
para el producto, o que el producto esté agotado, en cuyo caso la
maquina volvera a pedir una seleccion. También es posible que el exista
un error, o bien que el usuario pulse el botén de cancelar, en cuyo caso
se devuelve el dinero.

Ej. 5: En D&D, cuando tu personaje pierde todos sus puntos de vida,
cae moribundo. Cada turno, lanzas un dado de veinte y, segun la
siguiente tabla, sufre los siguientes efectos:

1: dos puntos e, 2-10: un punto <=, 11-19: un punto €, 20: dos
puntos §.

Si el personaje acumula tres o mas puntos de < (independientemente
de los puntos @ que tenga), muere. Si acumula tres o mas puntos de
¥ (independientemente de los puntos =+ que tenga), se estabiliza. Haz
un diagrama que modele este sistema.

Ej. 6: En 1989, la editorial R. Talsorian Games publicé el juego, creado
por Mike Pondsmith, “Cyberpunk”, junto a una segunda edicién
“Cyberpunk 2020” en 1990, que fue traducida el espafiol y, varios afios
después, en 2005, una tercera versidon “Cyberpunk V3.0" que tuvo
mucha peor acogida. La segunda versidon de este juego de rol fue
considerado, en 1996, uno de los 10 juegos mas populares de todos los
tiempos. El juego esta ambientando en el afio 2013 (2020 en la segunda
edicién, 2030 en la tercera edicién).

Mucho tiempo después, en 2020, el estudio CD Projekt RED cre6 el
videojuego “Cyberpunk 2077", ambientado en el mismo afio, sacando
también el juego de rol asociado Cyberpunk RED", basado en los juegos
de rol, aunque se establece la tercera edicibn como una version
alternativa no contemplada para esta continuacion. Este videojuego dio
origen la serie animada “Cyberpunk: Edgerunners”, ambientada en el
mismo afio y creada por Studio Trigger.

Todo este universo esta originado por las novelas de los ‘80,
especialmente “El neuromante” de William Gibson”, que originé una de
las peliculas mas miticas del género, "Blade Runner" (publicada en 1982)
ambientada en 2019, que tuvo un remake llamado Blade Runner 2049
(publicada en 2017), ambientada en dicho afio.

Crea un diagrama de estados por los que ha pasado el universo de
Cyberpunk. Como estados, emplea los nombres de juegos o series,
tales como “Cyberpunk 2077, ambientado en 2077". Como transiciones,
emplea el nombre de la editorial o estudio que hizo la nueva creaciény
el afio, por ejemplo “R. Talsorian Games, 1990".

81

82

Ej. 7: Realiza el diagrama de estados de una llamada telefénica.
Cosas como “pulsar un nimero” NO seran un evento, sino que lo seran
cosas como “introducir un nimero telefénico”.

Ej. 8: Realiza el diagrama de estados de un mensaje de correo
electrénico.

Considera que todos los correos son internos a un mismo servidor de
correo.

Ej. 9: Realiza un sistema de autentificacién de PIN telefénico, donde
el usuario debe introducir su PIN para iniciar el mévil. Si la clave es
introducida mal 3 veces, el sistema se desactiva.

Para activarlo, puede introducirse un segundo cédigo (que viene con la
tarjeta telefénica) que, si es introducido correctamente, el sistema
esperara para poder introducir un nuevo pin. Tras introducir el nuevo
pin, el teléfono se inicia (no hay que introducir nuevamente el pin para
iniciarlo).

Sin embargo, si se introduce mal el codigo de activacién 3 veces, la
tarjeta se bloquea definitivamente.

FI

2 Intentos
inicio

1 Intento
inicio

0 intentos
inicio

Nuevo | Espera por
Pin

nuevo PIN FI

/

1 intento
activacion

2 intento
activacion

Bloqueado

En este diagrama de estados, el estado inicial serd uno en el que todavia no
hayamos realizado ningun intento, puesto que desde el simbolo de inicio
(el punto de arriba a la izquierda) hasta el estado inicial no puede existir
ninguna transicién (solo una flecha). Este estados se ha llamado “o intentos
inicio” (podriamos haberlo llamado “inicio” o “reposo”).

A partir de ahi, estan los 3 estados de 0, 1 y 2 intentos fallidos. Si, estando
en cualquiera de ellos, realizamos un éxito de inicio (El), el teléfono se
iniciara y terminamos. Si, por el contrario, realizamos un fallo de inicio (Fl),
nos iremos a donde haya mas intentos de inicio fallidos (de “0 intentos de
inicio a 1, etcétera). Sin embargo, no hay un estado de "3 intentos de
inicio”, puesto que si se han realizado 3 intentos, el teléfono esta ya
desactivado.

En cuanto a los intentos de activacion, seria similar, con los “Fallos de
activacion” (FA) haciendo progresar de estado. Tampoco existe un “3
intentos de activacion”, porque en ese punto el teléfono estd ya bloqueado
y ahi terminariamos.

En caso de estar el teléfono desactivado, si conseguimos un “éxito de
activacion” (El), entonces se nos pedira un nuevo pin vy, tras ponerlo el
usuario, nos vamos a un teléfono activado directamente. Observa que,
desde el estado “espera nuevo pin” solo hay una transicidn posible, hacia
“iniciado”.

Ej. 10: Realiza el diagrama de estados de un proceso de compra en
un ecommerce. Los estados incluyen: "Cesta vacia", "Cesta con
productos”, "Proceso de pago", "Pago exitoso", "Pago fallido", "Compra
confirmada" y otros. Considera transiciones basadas en las acciones del
usuario y de la plataforma de pago, y unos estados basados en el
estado de la cesta/compra.

Aqui, no es posible, ni interesante, controlar el nimero exacto de articulos
que tiene la cesta, tan solo es necesario controlar si esta vacia o no, puesto
que de estarlo, no cebe ser posible el procesar pedido.

83

84

Borrar articulo
Modificar articulo
Anadir articulo

Borrar ultimo articulo J{

Cesta con articuloD—

Procesar pedido
* : x v x
Esperando L g
it - Esperando direccion =
nueva direccién
® W ’
Seleccionar direccién Pago fallido

: \J

Introdufir nueva direccién >Gsperando Pege)
‘L Intrudir datos pag

(8]

X

Gsperando pagc)

\bPago exitoso

—(Comra realizad)

*

Ej. 11: Realiza el diagrama de una maquina electrénica de café. La
maquina estard, inicialmente, apagada. El usuario debera pulsar un
botdén para encenderla, momento en el que la cafetera encendera una
luz y esperard que el usuario introduzca café y elija un programa. La
cafetera empezara cuando ambas cosas se realicen, puesto que tiene
un detector de peso para saber si se ha introducido café o no. Nota que
es posible cambiar el programa mientras no se haya iniciado.

Cuando el programa esta en funcionamiento es posible que ocurran
varias cosas: (1) el usuario cancele el programa, (2) se produce un error

(3) se completa el programa seleccionado o (4) el usuario apaga la
cafetera. La maquina entonces volvera a solicitar un programa.

Considera que el proceso finaliza cuando se vuelva a apagar la cafetera.

Ej. 12: Realiza el diagrama de un conjunto de semaforos que controla
una interseccién en forma de T, donde hay una calle principal (los lados
izquierdo y derecho) y un acceso secundario (la parte hacia abajo),
donde el trafico es mucho menor.

Por defecto, los semaforos permiten el trafico en la cale principal y
bloquean el trafico desde la calle secundaria. Cuando un coche es
detectado en la calle secundaria, pueden suceder dos cosas: (1) si no
hay trafico en la calle principal, se permite el paso a la calle secundaria
por 20 segundos y luego se da preferencia de nuevo a la calle principal.
(2) Si hay trafico en la calle principal, esperamos 30 segundos antes de
dar paso al acceso secundario durante 20 segundos y también
volvemos luego a dar preferencia a la calle principal.

También es posible que suceda otro evento, que es que sean las
11:00pm, en el que el semaforo se establece con luz amarilla
intermitente hasta las 7:00am, donde se vuelve al estado normal,
empezando con la preferencia a la calle principal.

Ej. 13: Un PNJ de un juego tiene estd, por defecto, quieto. Si se pulsa
sobre él, éste recitara una mision (pulsar de nuevo mientras recita la
misién no tendra efecto. Una vez complete de recitar su misién, podran
pasar 3 cosas.

(1) El usuario podra declinar la misién propuesta, en cuyo caso el PNJ
dird alguna frase y luego volvera al estado inicial. La mision seguira
disponible si se pulsa de nuevo sobre el PNJ.

(2) El usuario podra aceptar la propuesta, en cuyo caso el PN) dird
alguna frase mas y entonces el usuario podrd ir a obtener todas las
condiciones de la mision. Considera que cada una de estas condiciones
es independiente, pero pueden ser varias. Cuando todas estan
satisfechas, el usuario puede volver a hacer click en el PNJ, que dira
algo mas y la misién ya no volvera a estar disponible.

85

86

Ej. 14: Haz el diagrama de estados de una aplicacién de cdmara. La
camara podra establecer pardmetros de zoom, flash y filtro, aunque
tiene unos parametros por defecto. En todo caso, el botén para realizar
la fotografia solo estara activo cuando haya iluminacién suficiente, a
menos que el uso del flash esté activado. Cuando se pulse el botén
para hacer la fotografia, ésta se guardara en la galeria, y se dara opcion
a compartirla (una vez se selecciona compartir, los pasos siguientes
pertenecen al sistema, no a nosotros). En ambos casos, se llega de
nuevo al estado inicial (se considera final ya en este punto).

Ej. 15: [ej. examen] Realiza el diagrama de estados de un sistema de
autentificacion de una puerta con apertura automatica a través de un
pin numeérico.

La puerta, inicialmente cerrada, esperarad a que sea insertado un PIN y,
si éste es correcto, la puerta se abrira. Tras pasar 30 seg, la puerta se
cierra (se considera ésto como la finalizacion del diagrama de estados).

Si el PIN es introducido incorrectamente, no sucedera nada pero, si la el
pin es introducido mal 2 veces, la puerta se bloquea, no admitiendo pin
ninguno. Pasados 10 minutos, la puerta vuelve al estado de reposo
(estableciéndose el nimero de intentos fallidos a 0).

Desde el interior, si la puerta esta bloqueada, es posible accionar un
pulsador y la puerta se abrira durante 1h, tras lo cual se cerrara
(estableciéndose el numero de intentos fallidos a 0).

Ej. 16: [ej. examen] Crea el diagrama de estados de un programa de
facturas. El usuario podra afiadir o eliminar productos a una lista de
articulos (considera que el evento de "afiadir articulo" incluye también
especificar articulo). Una vez seleccionados los articulos deseados, el
usuario seleccionarad "continuar", en ese caso, el programa pedira los
datos del destinatario. Si el destinatario es una empresa, aplicard un
porcentaje de descuento preestablecido, en caso contrario, no se
aplicara descuento. Finalmente, el sistema generara la factura.

Especifica, de alguna forma en lenguaje UML, las situaciones en las que
una factura es, finalmente, creada.

	Unidad Didáctica 1: Sistemas informáticos
	1. Sistema informático
	Capas de un sistema informático

	2. Hardware
	Arquitectura
	Sistemas actuales

	3. Sistema operativo
	Sistema de arranque
	Funciones de un sistema operativo

	4. Aplicaciones
	Coste de desarrollo
	Plataformas de una aplicación

	Unidad Didáctica 2: Etapas del desarrollo
	1. Desarrollo del software
	El modelo en cascada

	2. Análisis
	Planificación
	Obtención de los requisitos
	Casos de uso
	Otras tareas

	3. Diseño
	Diseño arquitectónico
	Selección de tecnologías
	Modelado de datos
	Interfaz de usuario
	Diseño del plan de pruebas

	4. Codificación
	Compiladores e intérpretes
	Frameworks y librerías
	Tipos de lenguajes

	5. Prueba
	6. Mantenimiento
	Explotación
	Mantenimiento

	7. Documentación
	8. Ciclos de vida software
	Modelo en Cascada
	Modelo en Espiral
	Desarrollo Ágil
	Modelo en V
	Modelo RAD

	9. Herramientas
	Clasificación

	Unidad Didáctica 3: Casos de uso
	1. Casos de uso
	Actores
	Flujo principal, descripción y notas
	Flujos alternativos
	Precondiciones y postcondiciones
	Desglosar un paso
	Repeticiones y cambios de paso

	2. Diagrama frontera
	3. Relaciones
	Interacción o asociación.
	Generalización o especialización

	4. Inclusión
	Precondición
	Dividir un proceso complejos
	Realizar una tarea común

	5. Extensión
	6. Resumen y ejercicios

	Unidad Didáctica 4: 1. Diagramas de Estado
	1. Elementos
	2. Eventos de salida

