
EntornosEntornos
dede

DesarrolloDesarrollo
1º DAM/DAW1º DAM/DAW

Índice

UD 1: Sistemas informáticos........4

1. Sistema informático.....................5
Capas de un sistema informático.7

2. Hardware.......................................8
Arquitectura..................................10

Sistemas actuales.........................11

3. Sistema operativo.......................13
Sistema de arranque....................13

Funciones de un sistema operativo
..14

4. Aplicaciones................................16
Coste de desarrollo......................16

Plataformas de una aplicación. . .17

UD 2: Etapas del desarrollo........22

1. Desarrollo del software..............23
El modelo en cascada..................23

2. Análisis...25
Planificación..................................25

Obtención de los requisitos........27

Casos de uso.................................29

Otras tareas...................................30

3. Diseño..31
Diseño arquitectónico..................31

Selección de tecnologías..............31

Modelado de datos......................32

Interfaz de usuario.......................32

Diseño del plan de pruebas........32

4. Codificación.................................33

Compiladores e intérpretes........33

Frameworks y librerías.................35

Tipos de lenguajes........................35

5. Prueba...37

6. Mantenimiento...........................38
Explotación....................................38

Mantenimiento.............................39

7. Documentación..........................41

8. Ciclos de vida software..............42
Modelo en Cascada......................42

Modelo en Espiral.........................42

Desarrollo Ágil...............................43

Modelo en V..................................44

Modelo RAD..................................44

9. Herramientas..............................45
Clasificación...................................46

UD 3: Casos de uso......................48

1. Casos de uso...............................49
Actores...49

Flujo principal, descripción y notas
..50

Flujos alternativos........................51

Precondiciones y postcondiciones
..52

Desglosar un paso........................53

Repeticiones y cambios de paso 54

2. Diagrama frontera......................56

3. Relaciones...................................58

2

Interacción o asociación..............58

Generalización o especialización58

4. Inclusión......................................61
Precondición.................................61

Dividir un proceso complejos.....62

Realizar una tarea común...........63

5. Extensión.....................................65

6. Resumen y ejercicios..................67

UD 4: 1. Diagramas de Estado....76

1. Elementos....................................77

2. Eventos de salida........................80

3

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 1: 1:

SistemasSistemas
informáticosinformáticos

1.Sistema informático
Un sistema informático es cualquier dispositivo electrónico que
permita la libre ejecución de una serie de programas informáticos, los
cuales permitan realizar una serie de tareas, entre ellas, guardar y procesar
información. Por ejemplo, un ordenador portátil es un sistema informático,
porque permite ejecutar programas. Sin embargo, un reloj digital clásico no
lo es porque las entradas que posee (botones), tan solo nos permiten
gestionar una serie de comportamientos pre-establecidos en fábrica.

Algunos sistemas informáticos parecen no serlo porque el usuario final tan
solo puede usar un conjunto limitado de opciones, mientras que un
administrador sí que puede ejecutar todo tipo de programas. Por ejemplo,
el expendedor de tiques de transporte público de la figura realmente es un
equipo informático, algo que se puede adivinar por la pantalla (está
ejecutando un programa con un interfaz de usuario), aunque el usuario
final tan solo puede realizar ciertas funciones muy concretas.

Existen cierto hardware que realmente es un sistema informático, aunque
más limitado, en el que un hardware ejecuta un programa escrito en
memoria no volátil, a modo de firmware, como un router o una impresora.
Este programa que ejecutan puede cambiarse actualizando dicho firmware.

Estos sistemas informáticos se llaman empotrados.

5

Ej. 1: ¿Cuáles de los siguientes son equipos informáticos, y cuáles son
sistemas informáticos empotrados?:

 • Un móvil.
 • Una calculadora clásica.
 • Un cajero de un banco.
 • Un proyector.
 • Una máquina expendedora de refrescos.
 • Un smartwatch.
 • Un frigorífico con conexión a Internet.
 • Una PlayStation 5.
 • Un iPod nano.

Solución: Un móvil, un smartwatch y una PlayStation son dispositivos
que ejecutan aplicaciones, por lo que son, inequívocamente, sistemas
informáticos.

Una calculadora clásica no es un sistema informático porque su función
está implementada por hardware, y no puede ejecutar programas.

Un cajero de banco, actualmente, está implementado por un PC o
similar, por lo que si es un sistema informático. Pudiera parecer lo
contrario porque el usuario final solo tiene disponibles ciertas acciones,
pero un administrador podrá configurar muchas más cosas. De hecho,
el programa en sí que el usuario usa, es una aplicación.

Un proyector, una máquina expendedora de refrescos, un frigorífico con
conexión a internet y un iPod nano son sistemas empotrados, porque
ejecutan un programa específico en su firmware.

Ej. 2: De los siguientes ¿cuales son sistemas informáticos, y cuáles
son empotrados?:

 • Un portátil.
 • Automóvil (los dispositivos internos, no Android Auto ni similar).
 • Un reloj.
 • Un termómetro digital.
 • Sistemas de navegación GPS
 • Un voltímetro.
 • SmartTV

6

Capas de un sistema informático
El hardware es la parte “física” del sistema informático, es decir, todos los
componentes electrónicos y el resto de materiales que pueden tocarse
físicamente. El resto de elementos (aplicaciones y sistema operativo) son

software.

Aplicaciones
Ej: Writer, Firefox, Telegram, Steam, VSCode
Obj: Tareas usuario: crear documento, jugar, etc.

Sistema operativo
Ej: Windows, Linux, MacOS, Android, CellOS.
Obj: Organizar la ejecución de programas y
 Ocultar los detalles del hardware.

Hardware
Ej: PC, Arduino, Tablet, PS4.
Obj: Proporcionar soporte para ejecución.

Para gestionar todos esos recursos hardware, está el sistema
operativo, que provee de una plataforma común a los programas y
gestiona los recursos y también la ejecución de programa, para que éstos
puedan ejecutarse, independientemente de los detalles hardware.

Las aplicaciones son los programas que se ejecutan para que el usuario
pueda realizar la tareas que desee.

Ej. 3: Pon más ejemplos de aplicaciones. Esas aplicaciones,
¿necesitan a otros programas para ejecutarse (Google Maps en PC, etc.)?

Ej. 4: Pon un ejemplo de hardware que componga un sistema
informático.

Ej. 5: Pon un ejemplo de sistema operativo. Dicho sistema operativo
¿está creado para un sistema hardware concreto, o para varios de ellos?

7

2.Hardware
La Unidad Central de Proceso (CPU) es la que ejecuta los programas,
compuestos por muchas instrucciones. Para cada instrucción ejecutada, el
ordenador envía las órdenes necesarias al resto de elementos.

La CPU tiene una conexión dedicada con la memoria, donde se
encuentran tanto los programas a ejecutar (juego, editor de texto, etc.)
como los datos a utilizar. La CPU carga desde memoria esos programas y
los ejecuta, leyendo y modificando los datos según éstos programas
indiquen. Toda la información almacenada en la memoria se pierde
cuando el computador se apaga.

Para comunicarse con el resto de elementos, la CPU tiene una conexión de

alta velocidad con el chipset, el cual se comunica con el resto de
elementos para intercambiar datos entre los distintos elementos.

Conectados al chipset están los dispositivos de entrada y salida ,
que intercambian, gestionan o almacenan información. Así, por ejemplo,
puede haber un programa ejecutándose en la CPU que sea un editor de
texto, que puede emitir la orden de mover ciertos datos desde el disco
duro (correspondientes a un archivo de texto que se desea editar) hacia la

8

memoria. Un dispositivo es de entrada cuando el computador recibe datos
(o le entran datos), y es de salida cuando el computador emite datos (saca
datos). Muchos dispositivos son, principalemente, tato de entrada como
salida, como por ejemplo una .tarjeta de red

El almacenamiento es un tipo de dispositivo de entrada/salida que
almacena la información de forma permanente. Es más lenta pero de
mayor tamaño que la memoria principal. Ejemplos son el disco duro y el
almacenamiento interno de un smartphone. No hay que confundir este
elemento con la memoria principal.

Otro tipo de dispositivo de dispositivo de entrada/salida son los

periféricos, que se encuentran en el exterior del sistema informático,
conectados a éste a través de un cable, wifi, bluetooth o similar.
Ejemplos de periféricos serían el ratón o el monitor.

Ej. 6: Un programa que se está ejecutando lee constantemente el
teclado, en espera de que el usuario pulse una tecla, guardando la tecla
pulsada en memoria. Al ser pulsada, esa tecla es mostrada en el
monitor. Identifica los pasos generales de intercambio de datos entre
los distintos elementos del computador.

Solución: Se realiza un envío de datos desde el teclado hasta la
memoria. Eventualmente, la CPU lee esa memoria y envía la orden de
escribir el carácter asociado a la tecla pulsada hacia el monitor.

Ej. 7: Otro programa que se está ejecutando trata de leer ciertas
texturas guardadas en el disco duro y enviarlas a la GPU externa.
Identifica los pasos generales de intercambio de datos entre los
distintos elementos del computador.

Solución: la CPU inicia la lectura en disco, momento en el cual el chipset
toma el control, moviendo los datos (las texturas en este caso), a la
memoria de la GPU externa.

9

Ej. 8: Identifica si los siguientes dispositivos son dispositivos de
entrada, de salida o ambos. Identifica también cuáles de ellos de tipo
de almacenamiento, y cuáles son periféricos, o pueden serlo:

 • Un teclado.
 • Cascos de audio sin micro.
 • Disco duro interno.
 • Disco duro externo.
 • Un ratón.
 • Una pantalla.
 • Una pantalla táctil.
 • Altavoces externos.
 • Cascos de Realidad Virtual.
 • Un pendrive.
 • Un mando de juego.
 • Una tarjeta de red / wifi.
 • Un “pinganillo” bluetooth para un móvil.

Solución: son de entrada: el teclado, el ratón y el mando de juego,
puesto que, desde la perspectiva de la CPU, entran datos desde esos
dispositivos. De forma inversa, son de salida los cascos, la pantalla, los
altavoces y el pinganillo. El resto son de entrada y salida.
Periféricos son el teclado, los casos, el disco duro externo, los altavoces
externos, los cascos de realidad virtual, el pendrive, el mando de juego y
el pinganillo, pues son externos al PC (se conectan al PC por cable,
bluetooth u otro).

Arquitectura
Existen diversas arquitecturas de computadores. Cada arquitectura
consiste en definir una serie de características que un computador que sea
acoja a dicha arquitectura debe implementar: el juego de instrucciones,
microarquitectura, diseño lógico, etcétera. Ejemplos de arquitecturas son:

• x86. Es la arquitectura de los antiguos PCs.

• x86_64 (también llamado amd64). Creada por AMD en 1999, es
la arquitectura actual empleada en los PCs, y es retrocompatible
con la arquitectura x86, es decir, puede ejecutar programas

10

creados con la arquitectura x86. Domina el mercado de escritorio
y de consolas.

• ARM. Es una arquitectura energéticamente eficiente, aunque no
tan buena en computación intensiva (gaming, servidores, etc.).
Domina el mercado de móviles y otros dispositivos portátiles,
incluidos los computadores de Apple.

• RISC-V. Libre y abierta, puede usarse sin pagar licencia. Está
pensada para implementaciones sencillas, rápidas, pequeñas y de
bajo consumo.

Los programas compilados para una arquitectura no son ejecutables en
otra. Hay programas que son capaces de generar programas para varias
plataformas.

Sistemas actuales
Actualmente, hay diversos mercados objetivo para los sistemas
informáticos, algunos de los cuales son:

• PCs de escritorio y ordenadores portátiles . Tienen
arquitectura x86_64, y procesadores (CPUs) con 6 a 16 núcleos.
Suelen ejecutar Windows o Linux.

• Portátiles Apple. Tienen una micorarquitectura propia dentro
de la arquitectura ARM y ejecutan MacOs.

• Móviles. Tienen arquitectura ARM, con núcleos de rendimiento y
núcleos de eficiencia energética. Ejecutan Android en móviles
diseñados para este sistema, o iOs para iphones, aunque existen
otros sistemas operativos como LineageOS.

• Servidores. Suelen ser computadores con arquitectura x86_64
con hardware de virtualización, gran cantidad de nucleos y, a
menudo, varios procesadores.

11

• Routers. Aunque algunos aún usan la arquitectura MIPS (una
arquitectura de bajo consumo y libre), la mayoría de ellos usan
hoy día ARM. Los grandes routers de gran rendimiento, que
pueden verse en data centers y organizaciones similares, suele
utilizar x86_64. Suelen emplear sistemas propietarios o sistemas
Linux adaptados.

Uno de los límites más importantes en los sistemas es su fuente de
energía. Por ello, servidores y Pcs de escritorio pueden conseguir mucha
más capacidad de cómputo que otros sistemas alimentados por batería.

Ej. 9: ¿Qué arquitecturas más comunes usan hoy día los portátiles?
¿Qué arquitectura usa una PS5?

Solución: los portátiles usan, hoy día, la arquitectura x86_64, ya que
realmente son PCs, que también usan dicha arquitectura. La excepción
a ello son los portátiles Apple, que usan una arquitectura ARM. Una
PS5, si consultamos la página de la Wikipedia, vemos que es realmente
un PC modificado, por lo que su arquitectura es también x86_64.

Ej. 10: ¿Podría el juego Cyberpunk 2077, que apenas va en una PS4,
jugarse en un móvil?

Solución: Aunque hoy día los móviles son bastante potentes, tienen la
limitación de la batería y un procesamiento 3D que no puede llegar al
que puede mover un PC o un portátil con una tarjeta gráfica dedicada.
Además, los desarrolladores de Cyberpunk 2077 se vieron forzados a
introducir numerosos hacks para que el juego fuera ejecutable en PS4.
Por tanto, hacer que se ejecute en un móvil sería inviable sin muchos
sacrificios. Observa que Nintendo Switch es parecida en potencia a
ciertos móviles, y es incapaz de ejecutar muchísimos juegos AAA.

12

3.Sistema operativo
El sistema operativo gestiona es una primera capa de software que
gestiona el hardware subyacente, y permite ejecutar programas.

Sistema de arranque
Cuando un sistema informático se enciende, el hardware automáticamente
ejecuta un pequeño programa que está escrito en la placa base, llamado
BIOS, UEFI, Bootloader u otro según el hardware concreto. Este programa,
que puede ser configurado, se encarga de cargar el núcleo del sistema
operativo desde un dispositivo de almacenamiento, tras lo cual le otorga el
control.

Tras ello, este núcleo de sistema operativo carga el resto de si mismo, y
también ejecuta otros programas, como la interfaz de usuario que permite
al usuario seleccionar y ejecutar programas.

Ej. 11: ¿Es posible que haya hardware cuyo sistema de arranque
limite qué sistemas operativos pueden o no cargarse? ¿o bien realizar
limitaciones de acceso a ciertos componentes hardware?

Solución: si, de hecho el sistema de arranque seguro de UEFI que hay
en numerosos PCs y portátiles te impide instalar sistemas operativos
distintos al Windows que traen por defecto o, como mínimo, te impide
usar partes del hardware (puedes introducirte en la BIOS y desactivar el
arranque seguro).

Los móviles y tablets son otro hardware cuyo sistema de arranque
(llamado bootloader) que te impide cambiar el sistema operativo que
tienen. Para hacerlo, debes hackear el bootloader para poder cambiar
el sistema del móvil.

13

Funciones de un sistema operativo
Estando ya ejecutándose el sistema operativo, éste inicia la ejecución de
ciertos módulos del sistema operativo como son la interfaz de usuario o
programas en segundo plano que mantienen el correcto funcionamiento
del sistema.

A la orden del usuario, o según esté configurado el sistema operativo, éste
gestiona la ejecución de las diversas aplicaciones que permitirán al usuario
realizar las tareas que desee.

El sistema operativo provee, además, de una plataforma base para que se
ejecuten las aplicaciones. Proporciona a las aplicaciones una serie de
herramientas, que las aplicaciones pueden usar para realizar una serie de
funciones, como grabar un fichero a disco, mostrar un texto en pantalla,
etcétera. De esta forma, las aplicaciones no tienen que preocuparse de
cómo exactamente se guarda ese fichero, o cómo se muestra ese texto,
sino que es el sistema operativo quien se encarga de ello. Cuando un
programa hace uso de alguna de esta funciones se dice que realiza una

llamada al sistema.

Programa Programa Programa

Llamada Llamada Llamada Librería SO

Sistema operativo
Gestiona recursos compartidos, seguridad, etc.

Acceso al hardware por el SO (no por el programa directamente)

Hardware Hardware Hardware Hardware

Cuando se realiza una de éstas llamadas al sistema, el sistema operativo
toma el control y realiza la función solicitada, si es posible. Esto permite al
sistema operativo esconder los detalles del hardware, permitiendo a la
aplicación funcionar de igual forma independientemente de que el
hardware sea uno u otro.

14

Ej. 12: ¿Debería ser posible que dos programas tengan activas dos
llamadas, las cuales hagan uso de un mismo disco duro?

Solución: si, dado que los ordenadores actuales ejecutan varios
programas en paralelo, programas que puede perfectamente ser
independientes, nada impide que, en un momento dado, varios quieran
acceder al disco duro. Ahí, el sistema operativo será el responsable de
ordenar esas peticiones de acceso, según las políticas establecidas.

Ej. 13: ¿Debería el sistema operativo resolver las llamadas que hagan
uso de un hardware concreto de forma simultánea?

Solución: En algunos recursos (como el disco duro) el sistema operativo
envía varias peticiones a la vez, que luego éste resuelve a su manera,
pero en otros componentes hardware el sistema operativo decidirá cual
enviar primero.

Existen alguna librerías del sistema que extienden la funcionalidad del
sistema operativo, como por ejemplo las librerías DirectSound (que permite
a las aplicaciones manejar la reproducción y captura de audio en
aplicaciones y juegos en sistemas Windows) o Google Play Services (que
permite que a las aplicaciones de Android acceder a funciones como la
ubicación, autenticación, y servicios de Google). para dispositivos Android.
Estas librerías proporcionan a las aplicaciones una nueva batería de
llamadas al sistema que realizan funciones adicionales.

Ej. 14: Existe una librería de sistema de Windows necesaria para
ejecutar juegos en dicho sistema ¿cuál sería?

Solución: DirectX es la librería de sistema típica en windows, aunque
hoy día Vulkan también puede cumplir la misma función.

15

4.Aplicaciones
Las aplicaciones son el software que se ejecuta para que el usuario pueda
realizar la tareas que desee.

Coste de desarrollo
Las aplicaciones cuestan mucho más tiempo y dinero del que suele
pensarse: Desarrollar una aplicación profesional puede requerir años en la
que trabajan desde decenas hasta miles de trabajadores. Por ejemplo, en
2013, la compañía Naughty Dog creó, tras 3 años de desarrollo, el juego
Last of Us para el sistema operativo CellOS, que es el S.O. de la PlayStation
3, con la participación de más de mil personas y varias decenas de millones
de dólares de presupuesto. Las aplicaciones se financian de distintas
formas, como un precio de venta, publicidad, micropagos, venta de datos,
etc.

Ej. 15: Genshin Impact es un juego de móvil, en el que simplemente
exploras un mundo luchando contra monstruos, looteando y realizando
misiones ¿Qué coste ha tenido el juego? ¿Qué motivos puede haber
para ese coste?

Solución: en la página «List of most expensive video games to develop»
se dice que elcoste ha sido de más de 700 millones de dólares, aunque
una parte importante de ese presupuesto se debe al márqueting.

Hay que observar que es un juego de mundo abierto, con mucho
contenido en arte (personajes, escenarios, ciudades, monstruos,
conjuros, etc.), diseño de niveles (quests, PNJs, tutoriales, escenario,
etc.), reglas (conjuros, poderes, personajes, balance de juego), aparte
del desarrollo general (3D, controles, prueba en distintas plataformas,
etc.). Además, está el coste de servidores y personal de mantenimiento
del juego, facturación, moderación, etcétera.

16

Plataformas de una aplicación
Cuando unos desarrolladores de software crean un programa, éste se
realiza, generalmente, para un único sistema operativo. Por ejemplo,
existen juegos que son exclusivos de XBOX (Halo). Sin embargo, a los
desarrolladores puede interesarles sacar su aplicación para varios
sistemas. Así, por ejemplo, la empresa Naughty Dog lanzó, en 2013, Last of
US para CellOS, el sistema de Playstation 3. Un año después, lo lanzó para
Orbis OS, el S.O. de la PlayStation 4.

Ciertas técnicas pueden ser de gran ayuda para los desarrolladores a la
hora de sacar su aplicación para un segundo o sucesivos sistemas, pero
siempre requiere de un esfuerzo adicional el soportar más sistemas, pues
hay que testearlos y mantenerlos en varios sistemas. Otras veces, hay
factores que impiden o hacen poco deseable el portar una aplicación a
otras plataformas.

Ej. 16: El uego Among Us fue diseñado para ser jugado en local (son
los jugadores en el mismo lugar y, más tarde, se añadió un modo online.
Son capaces los desarrolladores de Among Us que, después de que su
juego se hiciese viral, apenas consiguieron crear algún mapa nuevo y
corregir errores, soportar plataformas adicionales?

Solución: los escasos desarrolladores quedaron desbordados por el
número de jugadores que requería servidores y mantenimiento de esa
estructura de juego online. Apenas pudieron hacer más puesto que el
juego no estaba originalmente pensado para ser online. Esto les
impidió crecer de forma adecuada e implementar mejoras de forma
efectiva.

Ej. 17: ¿Le interesaría a Microsoft, propietaria del S.O. Windows, que
el paquete Microsoft Office se ejecute en el sistema operativo rival
Linux?

Solución: El deseo de Microsoft es seguir imponiendo su sistema
operativo Windows a la comunidad de usuarios, para imponer su
market o su publicidad dentro de Windows. Aunque Office es un
programa que genera ventas, Microsoft a menudo proporciona
descuentos (para estudiantes, ONGs, docencia, etc.), para que Windows

17

siga siendo el sistema dominante. Permitir que se ejecute en Linux
facilitaría que algunos usuarios (aquellos cuya principal barrera para el
cambio es tener que dejar de usar Office y poco más) pudieran
abandonar Windows.

Ej. 18: ¿Interesaría a Discord, una empresa de audio y videollamadas
gratuita, soportar nuevos sistemas? ¿En qué casos lo haría?

Solución: Discord es una aplicación que necesita que los usuarios a
comunicar usen todos un sistema compatible con su aplicación, por lo
que necesita extenderse lo más posible. Discord solo dejará fuera
sistemas con pocos usuarios o que no tengan relevancia para su
aplicación.

Ciertas aplicaciones especiales, llamadas emuladores, que son capaces
de ejecutar programas destinados a otros sistemas. Así, por ejemplo, Wine
es capaz de ejecutar programas de Windows en entornos Linux, o el
programa MAME puede ejecutar las ROMS de las antiguas máquinas
recreativas de los 80 y 90.

Ej. 19: ¿Qué motivos tiene Valve, propietaria de la plataforma Steam,
para crear y mantener la aplicación Proton (que es una extensión de
wine), la cual permite jugar a juegos de Steam diseádos para Windows
en entornos Linux? ¿Y si tenemos en cuenta que el 98% de usuarios de
Steam son de Windows?

Solución: Linux no requiere pago para ser usado en la Steam Deck u
otro sistema. Además, Valve consigue depender menos de Microsoft,
que también tiene intereses en gaming (game pass y Xbox), que podría
en un futuro decidir perjudicar a Steam, ya sea de forma legal o ilegal
(como perjudicar su rendimiento como ya lo hace con Firefox y otras
aplicaciones).

También existe la virtualización, en la que el procesador posee na
unidad en la que es capaz de acelerar las ejecuciones de programas
escritos para otras arquitecturas, algo que se realiza con programas de
virtualización como VirtualBox, Docker, Kubernetes y otros. Algunas
virtualizaciones más concretas podemos encontrarlas en sistema
conccretos, como por ejemplo PS3, que es capaz de ejecutar los juegos de

18

PS2. La virtualización nos ofrece una máquina o entorno estándar que
podemos replicar en distintas plataformas, e incluso levantar ese mismo
servicio múltiples veces sobre el sistema host, que puede ser muy útil en
servidores compartidos, entornos empresariales y otros sistemas.

Ej. 20: Playstation 3, con una recepción inicial pobre, era compatible
con PS2, pero PS4 no lo era con PS3 o anteriores? ¿Por qué esto pudo
ser así?.

Solución: PS2 fue la consola más vendida de Sony, y dejar de ser
compatible con ella hubiera sido un suicidio de marqueting, sin
mencionar que muchos usuarios poseían infinidad de uegos en formato
físico para la PS2. La PS tuvo también grandes jugos, pero la apuesta de
Sony por la PS4 fue grande, en un momento de fuerza, por lo que Sony
prefirió venderte el remake de diversos juegos para la PS4, que estaban
en la PS4. Hoy día, esos juegos (PS1, PS2 y Ŝ·) se pueden jugar con la
suscripción más cara de PS Plus.

Algunas aplicaciones se crean para ser usadas a través de una página web.
Salvo excepciones, estas aplicaciones requieren bastantes más recursos
hardware y más intercambio de datos de red para funcionar, e incluso
poseen ciertas limitaciones y necesitan un mayor cuidado. A cambio, tienen
la ventaja que, una vez hechas, son accesibles por múltiples sistemas que
soporten un navegador web, disponibles en la los sistemas móviles y de
escritorio. Un ejemplo claro de aplicación web es el buscador de Google.

Ej. 21: ¿Por qué Google pagó a Apple 15M$ hace unos años para que
su buscador siga siendo el buscador predeterminado en iphones?

Solución: Google ingresa gran cantidad de dinero a través de la
publicidad en la web.

Ej. 22: ¿Qué tipo de aplicaciones son más adecuadas para que sus
desarrolladores elijan el desarrollo web en vez de (o además de)
desarrollar una aplicación para los distintos sistemas?

Solución: aplicaciones que deben soportar gran cantidad de sistemas,
móviles y de escritorio, son adecuadas para el en desarrollo web, ya que
los usuarios podrían no poder acceder a aplicaciones nativas.

19

También es una idea el desarrollar una aplicación web cuando el
objetivo es facilitar el acceso a la aplicación, puesto que la instalación de
aplicaciones suele ser una barrera de entrada para el usuario.

También se ha venido desarrollando el sistema de desarrollo

multiplataforma, en especial en ciertas áreas como es en los
videojuegos. Hoy día, motores gráficos como Unreal Engine, Unity o Godot,
permiten diseñar el juego en el entorno del PC, y exportarlo para multitud
de sistemas objetivo, como Nintendo Switch, Playstation 4/5, Linux, MacOS,
Windows, etcétera. Otras tecnologías, como Java o .NET, permiten realizar
una aplicación y ejecutarla en diversas plataformas. Estos sistemas tienen
que lidiar con la heterogeneidad de los múltiples sistemas que deben
soportar.

Ej. 23: ¿Por qué Civilization V, que está disponible para Windows,
Linux y MacOS, no está disponible en Xbox, PlayStation o Switch?

Solución: en este caso, el juego emplea teclado, un periférico muy poco
común en Xbox, PlayStation o Switch, por lo que existirían pocos
usuarios de estos sistemas que pudieran jugarlo.

Ej. 24: ¿Por qué Helltaker, un juego realizado por un artista para
promocionarse, está solo disponible para Linux, MacOS y Linux (empleó
un sistema de desarrollo que publicaba a la vez para esos 3 sistemas),
pero no para consolas?

Solución: El autor eligió un sistema de desarrollo que publicaba en los
citados sistemas, de forma que llegó de la forma más fácil al mayor
número de usuarios. Su objetivo era promocionar su arte, y no le
interesaba desarrollar y mantener para múltiples sistemas de consolas,
cada uno con contratos de confidencialidad, mantenimiento, etcétera.

Ej. 25: ¿Y qué sucede con juegos como Age of Empires IV (publicado
por Microsoft exclusivo para el Game pass de Microsoft) o The Legend
of Zelda: Breath of the Wild (publicado por Nintendo y exclusivo para
sus consolas)?

Solución: estos juegos son exclusivos para sus sistemas porque el
objetivo de sus publicadores (que encargaron y pagaron el desarrollo)

20

era el de atraer usuarios a sus sistemas, no el llegar a la mayor cantidad
de usuarios.

21

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 2: 2:

Etapas delEtapas del
desarrollodesarrollo

1.Desarrollo del software
Es desarrollo de software es un proceso que ocurre desde que se concibe
una idea hasta que se construye una aplicación implementada en el
sistema informático funcionando.

El proceso de desarrollo, que en un principio puede parecer una tarea
simple, consta de una serie de pasos de obligado cumplimiento, pues sólo
así podremos garantizar que los programas creados son eficientes, fiables,
seguros y responden a las necesidades de los usuarios finales (aquellos
que van a utilizar el programa).

El modelo en cascada
El modelo en cascada es uno de los enfoques
más antiguos y obsoletos, cuyas fases se
ejecutan en secuencia (cada una debe
completarse antes de pasar a la siguiente):

• Análisis: se recogen y estructuran los
requisitos del software a desarrollar, se
realiza una planificación y se realiza un
modelo de alto nivel.

• Diseño: Realiza un diseño del nuevo sistema y se crea el plan de
pruebas.

• Implementación. Se codifica según el diseño.

• Prueba. Se realizan las pruebas creadas en el diseño.

• Mantenimiento: se realiza la instalación del nuevo sistema, se
arreglan los errores y, en su caso, se añaden nuevas
funcionalidades.

23

Análisis

Diseño

Implementación

Prueba

Mantenimiento

El modelo en cascada, aún siendo un buen punto de partida pedagógico, es
un modelo adecuado solo para proyectos con requisitos bien definidos y
cambios mínimos, algo que no suele suceder, por lo que se usa muy poco.

24

2.Análisis
La importancia de esta etapa en el desarrollo de todo proyecto radica en
que todo lo demás dependerá de lo bien detallada que esté esta etapa.
También es la más complicada, ya que no está automatizada y depende en
gran medida del analista que la realice.

Planificación
Durante la planificación, se establece el ámbito del proyecto, definiendo el
alcance de este, los actores implicados y se intenta estimar qué se
necesitará para llevarlo a cabo:

• Se definen los objetivos y el alcance del proyecto, detallando
las características generales que tendrá.

• Se identifican a las distintas partes que puedan estar implicadas
por la realización del software, así como una primera concreción
de cómo éstas serían afectadas. Esto puede incluir un estudio de
mercado.

• Se identifican los riesgos del proyecto y, de ser posible, se trazan
posibles alternativas en caso de que esos riesgos se conviertan en
realidad.

• Se realiza una primera estimación de lo que se necesitará:
personal, equipo, tiempo, costes, etcétera, lo que suele llevar a un
plan de recursos y costes, a menudo usando un diagrama de
Gantt.

Conforme se van definiendo los requisitos, y a lo largo de todo el
desarrollo, estas estimaciones se van refinando.

Ej. 1: Un banco contacta con una empresa de desarrollo para que
implemente un cajero automático ¿Cuáles serán las partes implicadas?

25

Solución: las partes implicadas serían: (1) el propio banco, cuyos
intereses primarán sobre otros implicados, (2) los clientes del banco,
que dispondrán del nuevo servicio (3) los trabajadores, que tendrán
que saber operar con él y (4) los administradores e instaladores, que
deberán instalar y mantener el sistema.

Ej. 2: Deseamos realizar un juego, financiándonos con la venta de
éste. Comenta algunos de los posibles riesgos de este proyecto.

Solución: el juego podría no ser lo suficientemente atractivo para los
usuarios, o puede que haya demasiada competencia de juegos
parecidos. Es posible también que nuestro equipo no sea capaz de
realizar el juego o que el márqueting sea inadecuado.

Ej. 3: Deseamos realizar una aplicación que consistirá en la creación y
edición de notas, con un modelo de negocio basado en publicidad en la
aplicación, con características novedosas para diferenciarnos de la
competencia. Establece el alcance y objetivos; las partes
interesada/afectadas, y los riesgos.

Solución: El objetivo del proyecto sería algo como «el realizar una
aplicación de edición de notas que sea rentable a través de publicidad»
En cuanto al alcance, deberemos decidir hasta donde deseamos llegar,
en este caso (a grandes rasgos) se desea una complejidad
suficientemente alta como para desmarcarse de la competencia,
incluyendo, posiblemente, un márqueting de cierto nivel.

Ej. 4: Queremos desarrollar un juego para PlayStation. Somos un
equipo de dos personas, un portátil y un 1 equipo de desarrollo y
pruebas (Sony solo nos ha asignado un devkit). Establecemos las
siguientes tareas:

 • Concepto del juego: 2 sem. (requiere 1 portátil).
 (Necesario para Demo, programación, márqueting y arte).
 (Varios desarrolladores a la vez no requiere portátil extra).
 • Pedir equipo de desarrollo: 1 sem. (requiere 1 portátil).
 (Necesaria para las tareas que necesiten equipo de desarrollo).
 • Creación de demo. 2 sem. Requiere 1 equipo de desarrollo.
 • Programación. 3 sem. (requiere 1 equipo de desarrollo).
 • Arte. 2 sem. (requiere 1 portátil).

26

 • Márqueting. 1 sem. (requiere 1 portátil).
 (Requiere Arte)
 • Pruebas. 1 sem. (requiere 1 equipo de desarrollo).
 (Requiere de todas las demás tareas, excepto márqueting).

Realiza un diagrama que minimice el tiempo a emplear.

Solución: En primer lugar, puesto que tenemos que realizar el
concepto, que es llave para todo lo demás, empleamos todos los
recursos disponible a tal tarea. Tras ello, debemos pedir el equipo de
desarrollo para poder acceder a la programación, la creación de la demo
y las pruebas, pero el pedir los equipos de desarrollo requiere de un
portátil. Una vez conseguido el entorno de desarrollo, las tareas se
dividen según el recruso necesario.

Obtención de los requisitos
Aquí, se investigan y definen los requisitos del sistema y del software,
comprendiendo las necesidades de los usuarios y las limitaciones técnicas.
Se documentan los objetivos y las restricciones clave que guiarán el
desarrollo.

A la hora de recoger los requisitos, deben tenerse en cuenta los distintos
actores que interactúan con el sistema, no solo en usuario final. Con ello
en cuenta, se realizan dos recogidas de requisitos, en el siguiente orden:

• Requisitos del sistema: se definen los requisitos generales
del sistema al completo, tanto aspectos de negocio, de software o
de hardware. Incluye tanto requisitos internos al equipo
informático que ejecutará el software como a toda la estructura
(redes, dispositivos externos, interfaces, etc.).

27

1(ED) Concepto Programación Demo Pruebas

2(prt) Concepto Pedir ED Arte Márquet.

• Requisitos de software: se definen lo que debe hacer el
software y cómo debe hacerlo: temas como el rendimiento, la
escalabilidad, la seguridad o la mantenibilidad, pero siempre
desde el punto de vista del software.

Los requisitos obtenidos en las dos fases anteriores pueden ser de dos
tipos:

• Requisitos funcionales: Qué funciones tendrá que realizar la
aplicación. Qué respuesta dará la aplicación ante todas las
entradas. Cómo se comportará la aplicación en situaciones
inesperadas.

• Requisitos no funcionales: Tiempos de respuesta del
programa, legislación aplicable, tratamiento ante la simultaneidad
de peticiones, etc.

Una vez tenemos los requisitos, debemos filtrarlos (resolviendo
contradicciones, eliminando duplicidades, etc.) y priorizados.

Tenemos un crear un software cuya idea inicial es que permita a los
usuarios crear, gestionar y marcar como completadas sus tareas diarias.
Como modelo de negocio, planeamos que se integre un sistema de
anuncios.

Requisitos del Sistema:

• Generación de ingresos con anuncios (No Funcional).

• Almacenamiento en la nube (Funcional).

Requisitos del Software:

• Creación, edición y eliminación de tareas (Funcional).

• Marcado de tareas como completadas (Funcional).

• Integración con Sistema de anuncios (Funcional).

28

• Tiempo de respuesta de la carga de tareas (No Funcional).

• Seguridad en la transferencia y almacenamiento de datos (No
Funcional).

Ej. 1: En el ejemplo anterior, se tienen en cuenta el gestionar las
tareas en distintos dispositivos. Añade lo necesario para que las tareas
sean gestionadas conjuntamente por un grupo de usuarios. Considera
la inclusión de un administrador de grupo.

Solución: Como hay un concepto nuevo, el de grupos, habría que
añadir funcionalidades para crear y finalizar grupos, así como añadir o
eliminar usuarios del grupo. También sería conveniente incorporar el
concepto de administrador, quizás por defecto el creador del grupo,
que pueda realizar estas gestiones de usuarios, así como el eliminar el
grupo.

Ej. 2: Crea una lista de requisitos de un software para dispositivo
móvil que se encargará de activar o desactivar un sistema de alarma.

Solución: Los requisitos del software: Activar alarma (funcional),
Desactivar alarma(funcional), Ver estado de alarma (funcional), intuituva
(no funcional), seguridad (no funcional).

Respecto a los requisitos del sistema, serían la conexión con la alarma
en cuestión (funcional).

Ej. 3: Crea una lista de requisitos sobre un sistema de gestión de
biblioteca escolar.

Casos de uso
Una vez que tenemos los requisitos, es hora de darles una estructura. Se
define una estructura de alto nivel del software a realizar empleando los
diagramas de casos de uso.

29

En estos casos de uso se detallan todas las funcionalidades desde el punto
de vista de los usuarios que emplearán el sistema. Cada una de estas
funcionalidades tendrá descritos los distintos pasos para que estas tareas
realizadas por el usuario sean realizadas.

Otras tareas
Durante el análisis, puede ser necesario realizar otras tareas, según la
naturaleza de cada proyecto. Entre otros, pueden ser:

• Prototipado: a veces es difícil obtener ciertos requisitos o la
forma en la que han de ser realizadas ciertas tareas. Para ello
puede ser útil realizar un prototipo del software a realizar, que
luego es descartado.

• Estudio de impacto: cuando se tiene que decidir si el reemplazar
un sistema será beneficioso o no, en qué puntos habrá que
realizar adaptaciones y cuán complicadas pueden ser éstas.

• Estudio de viabilidad, que puede contener aspectos técnicos o
mercantiles que permitan decidir si el proyecto es posible con el
equipo y recursos de los que se dispone.

30

3.Diseño
Durante el diseño, se planifica la estructura y la arquitectura del software.
Esto implica determinar cómo se organizarán los componentes del sistema
para lograr un funcionamiento eficiente. Durante esta fase, donde ya
sabemos lo que hay que hacer, el siguiente paso es definir cómo hacerlo.

Diseño arquitectónico
Consiste en dividir el sistema en partes y establecer las relaciones entre
esta partes, especificando qué hace cada parte. El resultado será un
modelo funcional-estructural de los requerimientos del sistema global,
dividido en partes.

Este diseño se detalla, parte a parte, resultando en un diseño mucho más
completo que también establece las relaciones entre las partes.

Selección de tecnologías
Las decisiones aquí pueden ser tomadas a lo largo de la la fase de diseño, e
incluyen el seleccionar:

• Los lenguajes de programación a usar.

• Frameworks y librerías de mayor relevancia.

• Las arquitecturas a soportar

• Los sistemas de gestión de bases de datos.

• Tecnologías a emplear.

31

Modelado de datos
Se defines las entidades, atributos, atributos clave y relaciones de los datos,
así como el proceso para acceder, insertar, modificar o borrar esos datos,
junto con las políticas correspondientes. Se busca una estructura eficiente
y coherente que facilite el acceso, la manipulación y el almacenamiento de
la información de acuerdo con los requisitos del sistema.

Interfaz de usuario
Es el diseño de la interfaz de usuario, donde se diseñan las pantallas con
las que el usuario usará con la aplicación. Este diseño buscará una
interactividad intuitiva, de forma que el usuario encuentre fácilmente las
funcionalidades que desea emplear en cada momento.

Dentro del diseño de la interfaz estaría la definición las tareas de usuario .
Éstas describen las tareas que un usuario final podrá realizar con nuestro
futuro programa. Por ejemplo, el usuario de un programa de edición
fotográfica podría tener la tarea de:

• (1) Cargar imagen

• (2) Seleccionar filtro de imagen

• (3) Modificar valores de filtro

• (4) aplicar filtro.

Diseño del plan de pruebas
Se diseñan las pruebas que serán realizada en la fase de pruebas.

32

4.Codificación
En esta fase, los programadores escriben el código fuente del software
basándose en los diseños previamente establecidos. Se siguen estándares
de codificación para asegurar la coherencia y la calidad del código. Las
características deseables de todo código son:

• Modularidad: que esté dividido en trozos más pequeños.

• Corrección: que haga lo que se le pide realmente.

• Fácil de leer: para facilitar su desarrollo y mantenimiento futuro.

• Eficiencia: que haga un buen uso de los recursos.

• Portabilidad: que se pueda implementar en cualquier equipo.

Durante esta fase, el código creado por los desarrolladores se llama código
fuente, que es un texto legible por un humano, pero no es ejecutable por el
sistema informático.

Compiladores e intérpretes
Una vez tenemos un código fuente, tendremos que realizar un proceso
para que el código fuente sea ejecutado. Existen varias formas:

• Lenguajes compilados. Un programa llamado compilador
convierte cada uno de los ficheros del código fuente en código
objeto. Luego, otro programa llamado enlazador los une,
empleando librerías del sistema operativo si es necesario, para
generar un programa ejecutable. A partir de ahora, para ejecutar
el programa, ya no serán necesarios ni el compilador ni el
enlazador, solo el programa ejecutable resultante.

Compilador Enlazador

Librería del SO ⬊

33

Código fuente ⮕ Código Objeto ⮕ Código ejecutable

Código fuente ⮕ Código Objeto ⬈

• Lenguajes interpretados. Un programa llamado intérprete,
lee las instrucciones del código fuente y las va ejecutando. Cada
vez que queramos ejecutar el programa deberemos usar el
intérprete. Este método es más lento que el anterior, porque se
deben ir traduciendo las instrucciones antes de poder ejecutarlas.

Traductor

Código fuente ⮕ Lenguaje

Código fuente ⬈ (Llamada)

• Máquina virtual. Este método, usado por lenguajes como Java
o C#, es un caso especial del anterior. El código se compila
generando un código intermedio (también llamado bytecode),
que luego es interpretado por el intérprete. Aunque este método
no es tan eficiente como el primero (la compilación pura), pero si
que es más eficiente que el anterior, pues el código intermedio es
más competo y está optimizado para ser interpretado de la forma
más rápida posible.

Compilador Traductor

Código fuente ⮕ Código intermedio ⮕ Máquina virtual

Código fuente ⬈

34

Frameworks y librerías
Las librerías son trozos de código fuente, bien encapsulados, que realizan
una función concreta, que serán llamados por nuestro código para realizar
esas funciones. Por ejemplo, una librería puede encargase de encriptar un
fichero, de forma que le pasamos un fichero y una clave, y nos devuelve el
fichero encriptado. Es muy común usar librerías realizados por terceros, de
forma que nosotros nos ahorramos de desarrollar todo lo que la librería
hace.

Los lenguajes de programación proporcionan una serie de librerías del
lenguaje, que están disponibles en el lenguaje. Por ejemplo, en java
tenemos la librería java.sql, que contiene las diversas clases e interfaces
para comunicarse con bases de datos relacionales.

Los frameworks, tales como Angular, Spring o ASP.NET son estructuras más
completas que proporcionan todo un conjunto de funcionalidades ya listas
para usar en nuestros programas. En un framework, el flujo de trabajo lo
dicta él, de forma que el código del desarrollador debe adaptarse a él.

Un problema de los frameworks suele ser la dependencia de estas
funcionalidades y que es posible que su uso haga que nuestro programa
final necesite más recursos. Algunos frameworks poseen una interfaz
propia que facilita aún más el desarrollo, tales como Unity, y Unreal Engine.

Tipos de lenguajes
En esta fase también se deciden los lenguajes a usar. Se pueden realizar
muchas clasificaciones de los lenguajes de programación. Algunas de ellas
pueden ser:

• Alto nivel, medio nivel o bajo nivel. Los de alto nivel (Java, C#, etc.)
son mas potentes y requieren menos esfuerzo de desarrollo, pero
son menos eficientes. Los de bajo nivel (ensamblador) son muy
cercanos a la máquina. El nivel intermedio (C), consiguen un
compromiso entre ambos.

35

• Estructurados y orientados a objeto. Los orientados a objetos
(Java) permiten encapsular código en objetos y ayudan a que el
código sea modular. Los estructurados solo puede llegar a
implementar funciones para ello.

• Visuales vs textuales. Los textuales (Java, C, C++, C#, etc.) requiren
que se escriba texto para realizar el código. Los visuales (Microbit,
Scratch) disponen de una interfaz en la que se van juntando
bloques para realizar el código.

• Lenguajes de marcas (XML, HTML, JSON). Definen un programa o
un contenido con texto que posee marcas para estructurar o
identificar los elementos.

• Lenguajes declarativos (SQL). No se detallan los pasos a seguir,
sino el resultado deseado.

36

5.Prueba
La fase de prueba es esencial para garantizar que el software funcione
correctamente. Se diseñan casos de prueba para verificar que el software
cumple con los requisitos y se identifican y corrigen los errores antes de la
entrega al cliente.

Normalmente, éstas se realizan sobre un conjunto de datos de prueba, que
consisten en un conjunto seleccionado y predefinido de datos límite a los
que la aplicación es sometida.

La realización de pruebas es imprescindible para asegurar la validación y
verificación del software construido. Entre todas las pruebas que se
efectúan sobre el software podemos distinguir básicamente:

• Pruebas unitarias. Consisten en probar, una a una, las
diferentes partes de software y comprobar su funcionamiento
(por separado, de manera independiente). JUnit es el entorno de
pruebas para Java.

• Pruebas de Integración. Se realizan una vez que se han
realizado con éxito las pruebas unitarias y consistirán en
comprobar el funcionamiento del sistema completo: con todas
sus partes interrelacionadas.

La prueba final se denomina comúnmente Beta Test, ésta se realiza sobre
el entorno de producción donde el software va a ser utilizado por el cliente
(a ser posible, en los equipos del cliente y bajo un funcionamiento normal
de su empresa).

37

6.Mantenimiento

Explotación
La explotación es la momento en que los usuarios finales conocen la
aplicación y comienzan a utilizarla. La explotación es la instalación, puesta a
punto y funcionamiento de la aplicación en el equipo final del cliente.

En el proceso de instalación, los programas son transferidos al computador
del usuario cliente y posteriormente configurados y verificados. Es
recomendable que los futuros clientes estén presentes en este momento e
irles comentando cómo se va planteando la instalación. En este momento,
se suelen llevan a cabo las Beta Test, que son las últimas pruebas que se
realizan en los propios equipos del cliente y bajo cargas normales de
trabajo.

Una vez instalada, pasamos a la fase de configuración. En ella, asignamos
los parámetros de funcionamiento normal de la empresa y probamos que
la aplicación es operativa.

También puede ocurrir que la configuración la realicen los propios usuarios
finales, siempre y cuando les hayamos dado previamente la guía de
instalación. Y también, si la aplicación es más sencilla, podemos programar
la configuración de manera que se realice automáticamente tras instalarla.
(Si el software es "a medida", lo más aconsejable es que la hagan aquellos
que la han fabricado).

Una vez se ha configurado, el siguiente y último paso es la fase de
producción normal. La aplicación pasa a manos de los usuarios finales y se
da comienzo a la explotación del software.

38

Mantenimiento
Después de la implementación, el mantenimiento implica realizar
actualizaciones, correcciones de errores y mejoras en el software para
mantenerlo actualizado y funcionando de manera óptima a lo largo del
tiempo.

En cualquier otro sector laboral esto es así, pero el caso de la construcción
de software es muy diferente. La etapa de mantenimiento es la más larga
de todo el ciclo de vida del software. Por su naturaleza, el software es
cambiante y deberá actualizarse y evolucionar con el tiempo.

Deberá ir adaptándose de forma paralela a las mejoras del hardware en el
mercado y afrontar situaciones nuevas que no existían cuando el software
se construyó. Además, siempre surgen errores que habrá que ir
corrigiendo y nuevas versiones del producto mejores que las anteriores.

Por todo ello, se pacta con el cliente un servicio de mantenimiento de la
aplicación (que también tendrá un coste temporal y económico).

El mantenimiento se define como el proceso de control, mejora y
optimización del software. Su duración es la mayor en todo el ciclo de vida
del software, ya que también comprende las actualizaciones y evoluciones
futuras del mismo. Los tipos de cambios que hacen necesario el
mantenimiento del software son los siguientes:

• Perfectivos: Para mejorar la funcionalidad del software.

• Evolutivos: El cliente tendrá en el futuro nuevas necesidades. Por
tanto, serán necesarias modificaciones, expansiones o
eliminaciones de código.

• Adaptativos: Modificaciones, actualizaciones... para adaptarse a
las nuevas tendencias del mercado, a nuevos componentes
hardware, etc.

• Correctivos: La aplicación tendrá errores en el futuro (sería
utópico pensar lo contrario).

39

40

7.Documentación
Se crea documentación que describe el funcionamiento y el uso del
software. Esto incluye manuales de usuario, descripciones técnicas y
registros de cambios para futuras referencias. Es necesaria para poder dar
toda la información a los usuarios de nuestro software y poder acometer
futuras revisiones del proyecto.

La documentación no es una fase en sí, sino que se desarrolla durante el
resto de fases. Algunos resultados de la documentación son:

• Guía Técnica: Aspectos técnicos de las etapas anteriores (análisis,
diseño, implementación, prueba y mantenimiento), para facilitar
el mantenimiento a los propios desarrolladores..

• Guía de uso: Guía para el usuario final de cómo utilizar la
aplicación.

• Guía de instalación: Los requisitos de la aplicación y cómo
instalarla y ponerla a funcionar, para el administrador y/o el
usuario final.

41

8.Ciclos de vida software
Los ciclos de vida del software son modelos o enfoques que describen
cómo se desarrolla y se mantiene el software a lo largo de su ciclo de vida.
Cada ciclo de vida tiene sus propias fases y actividades específicas.

Modelo en Cascada
El modelo en cascada es uno de los ciclos de vida
más antiguos y lineales. Las fases se ejecutan en
secuencia, y cada una debe completarse antes de
pasar a la siguiente. Tan solo es adecuado para
proyectos con requisitos muy bien definidos, y
que se prevean los mínimos cambios, algo que
no suele suceder, salvo en los proyectos más
pequeños, por lo que se usa muy poco.

Modelo en Espiral
El modelo en espiral incorpora iteraciones
y se enfoca en la gestión de riesgos (el
equipo debe ser tener la experiencia
suficiente para evaluarlos). Es un ciclo de
vida flexible y adaptativo, para grandes
sistemas complejos que presentan
diversos riesgos, como el software de
control de un avión comercial. También es
usado en proyectos experimentales y de
investigación.

El desarrollo progresa a través de ciclos repetidos, cada uno de los cuales
permite la incorporación de mejoras y cambios.

42

Análisis

Diseño

Implementación

Prueba

Mantenimiento

Determinar
Objetivos

Evaluar
riesgos

Planificación Desarrollo
y prueba

Desarrollo en Espiral Incremental: Es similar al modelo en espiral,
pero se enfoca en entregar incrementos funcionales del software en cada
iteración. Cada iteración agrega nuevas capacidades al sistema, lo que
permite una entrega temprana de funcionalidad.

Desarrollo Ágil
Los métodos ágiles, como Scrum y Kanban, se centran en la flexibilidad y la
colaboración continua. Los proyectos se dividen en iteraciones cortas
llamadas “sprints” y se adaptan a medida que se avanza. La priorización de
las características y la retroalimentación constante son fundamentales.

En el desarrollo ágil, el proceso se organiza en ciclos cortos llamados
sprints (de 1 a 4 semanas) y suele seguir estos pasos clave:

• Planificación: Se identifican los requisitos y se priorizan en una
lista de trabajo (backlog). Se selecciona una o varias
características, que son grupos de requisitos.

• División en tareas: Las características se dividen en tareas
pequeñas para completar en el sprint.

• Desarrollo: El equipo trabaja en las tareas, revisando el progreso
en reuniones diarias.

• Pruebas y validación: Se realizan pruebas continuas para asegurar
la calidad.

• Revisión del sprint: Se presenta el trabajo completado y se obtiene
retroalimentación.

• Retrospectiva: El equipo evalúa el proceso y mejora para el
siguiente sprint.

• Entrega continua: Se liberan versiones funcionales del software de
manera frecuente.

Este ciclo se repite, permitiendo adaptarse rápidamente a cambios y
mejorar el producto de forma continua.

43

Timeboxing: En metodologías ágiles es posbile usar el la técnica de
Desarrollo en Espacios de Tiempo, o Timeboxing, que se basa en la
asignación de un tiempo fijo para cada fase del proyecto. El desarrollo se
adapta a ese marco de tiempo y los recursos disponibles. Se enfoca en la
entrega de incrementos de funcionalidad de manera regular.

Modelo en V
El modelo V ((Validación y
Verificación)) refleja la relación
entre las fases de desarrollo y
prueba. Cada fase de desarrollo
tiene una fase de prueba
correspondiente. Las pruebas se
realizan para verificar que cada
etapa cumple con los requisitos
y para validar que el producto
final satisface las necesidades
del cliente.

Modelo RAD
El Desarrollo Rápido de Aplicaciones se enfoca en la rápida creación de
prototipos y la iteración continua. Se utiliza cuando los requisitos no están
bien definidos y se busca una entrega rápida. Se construyen prototipos
para refinar los requisitos antes de la implementación final.

44

Ingeniería
Requisitos ⬄

Validación
sistema

Diseño del
sistema

⬄ Verificación
del sistema

Diseño del
software

⬄ Verificación
del software

Codificación

9.Herramientas
En la práctica, para llevar a cabo varias de las etapas vistas en el punto
anterior contamos con herramientas informáticas, cuya finalidad principal
es automatizar las tareas y ganar fiabilidad y tiempo. Esto nos va a permitir
centrarnos en los requerimientos del sistema y el análisis del mismo, que
son las causas principales de los fallos del software.

Las herramientas CASE son un conjunto de aplicaciones que se utilizan en
el desarrollo de software con el objetivo de reducir costes y tiempo del
proceso, mejorando por tanto la productividad del proceso.

El desarrollo rápido de aplicaciones o RAD es un proceso de desarrollo de
software que comprende el desarrollo iterativo, la construcción de
prototipos y el uso de utilidades CASE.

Hoy en día se suele utilizar para referirnos al desarrollo rápido de
interfaces gráficas de usuario o entornos de desarrollo integrado
completos. La tecnología CASE trata de automatizar las fases del desarrollo
de software para que mejore la calidad del proceso y del resultado final. En
concreto, estas herramientas permiten:

• Mejorar la planificación del proyecto.

• Darle agilidad al proceso.

• Poder reutilizar partes del software en proyectos futuros.

• Hacer que las aplicaciones respondan a estándares.

• Mejorar la tarea del mantenimiento de los programas.

• Mejorar el proceso de desarrollo, al permitir visualizar las fases de
forma gráfica.

45

Clasificación
Normalmente, las herramientas CASE se clasifican en función de las fases
del ciclo de vida del software en la que ofrecen ayuda:

• U-CASE: ofrece ayuda en las fases de planificación y análisis de
requisitos.

• M-CASE: ofrece ayuda en análisis y diseño.

• L-CASE: ayuda en la programación del software, detección de
errores del código, depuración de programas y pruebas y en la
generación de la documentación del proyecto.

Ejemplos de herramientas CASE libres son ArgoUML, Use Case Maker y
ObjectBuilder.

Ej. 4: ¿Cuáles de estas son herramientas del desarrollo software?:

Compilador, editor de texto, entorno de pruebas, Programa de
diagramas UML.

Solución: todas ellas son herramientas del desarrollo, ya que todas son
empleadas en éste.

46

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 3: 3:

Casos de usoCasos de uso

1.Casos de uso
Los casos de uso especifican cada uno de los comportamientos de nuestro
sistema: abarcan, por tanto los requisitos funcionales del sistema. Cada
caso de uso es, fundamentalmente, una lista de pasos que detallan el
comportamiento de una funcionalidad del sistema.

Los casos de uso (y los diagramas de casos de uso que veremos más
adelante) se crean en la primera fase del desarrollo del software, la fase de
análisis. Su principal función es dirigir el proceso de creación del software,
definiendo qué se espera de dicho software. Los diagramas de casos de
uso se emplearán luego para crear, durante la fase de diseño, los
diagramas de clases.

La ventaja principal de los casos de uso es su facilidad para ser
interpretados, lo que hace que sean especialmente útiles en la
comunicación entre desarrolladores entre si y entre éstos y el cliente. Han
de ser definidos, eso si, con cuidado y precisión, de forma detallada, pues
cualquier característica del software que no se consiga tener en cuenta en
los casos de uso ocasionará inconsistencias más adelante.

Actores
Es cualquier entidad externa que interactúa con la aplicación. Los actores
son las entidades que desencadenan los casos de uso y participan en las
interacciones con el sistema para lograr ciertos objetivos.

Los actores pueden ser personas, otros sistemas, dispositivos o incluso
otros programas. Cada actor tiene un papel específico y puede
desempeñar un papel activo al iniciar o participar en un caso de uso, o un
papel más pasivo al recibir los resultados de las interacciones.

Por ejemplo, en un sistema de gestión de biblioteca, los actores podrían ser
"bibliotecario", "estudiante" y "sistema de inventario". Cada uno de estos

49

actores desempeña un papel diferente y participa en casos de uso
específicos, como "prestar libro", "devolver libro" o "actualizar inventario".
La identificación clara de los actores y sus roles es fundamental para
comprender y modelar los requisitos del sistema en el análisis de casos de
uso.

Flujo principal, descripción y notas
En el flujo principal, se detallan los pasos habituales que tanto los actores
como el sistema realizan para que se lleve a cabo la funcionalidad que se
está describiendo.

Visualizar fecha

Actores: Usuario

Descripción:
El usuario visualiza la fecha del sistema.

Flujo Principal:
1. El usuario selecciona la opción de visualizar fecha.
2. El sistema muestra la fecha del sistema.

Notas:
El sistema trabajará con la hora local.

El caso de uso anterior, es posible que el diseño final de la aplicación no
tenga una “opción de mostrar lista de chats activos”, sino que se muestre la
lista de chats directamente al iniciar la aplicación: es algo que aún no
sabemos como será, pero en el caso de uso debemos especificar que
seleccionamos esa opción.

Por lo general, en especial en estos primeros ejemplos, los pasos del flujo
principal alternarán entre una acción del usuario y una del sistema. Solo
cuando un paso sea muy complejo, se dividirá en varios paso

Se suele incluirse una descripción del caso de uso, que resumirá lo que
realiza dicho caso de uso.

50

Cuando sea necesario, habrán unas notas , que podrán ser sobre el caso
de uso en general, sobre alguno de los puntos del flujo principal o de los
alternativos, etcétera. En muchas ocasiones, estas notas adicionales
surgen de los requisitos no funcionales.

Flujos alternativos
Los flujos alternativos describen las excepciones al comportamiento del
flujo principal, de forma que reemplazan al paso con el que comparten
número en caso de que ocurra algún suceso: en el caso de uso siguiente, si
no hubieran chats activos, se mostraría el paso 2a, en vez de el 2.

Hay que destacar que, en el caso de uso no se incluyen los errores, tales
como que el usuario haya introducido mal los datos que se pidan, que no
haya conexión a Internet, etcétera.

Visualizar Chat

Actores: Usuario

Descripción:
Interacción entre el usuario y el sistema para visualizar un chat activo.

Flujo Principal:
1. El usuario selecciona la opción de mostrar lista de chats activos.
2. El sistema muestra la lista de chats activos
3. El usuario selecciona un chat
4. El sistema muestra el chat seleccionado.

Flujo secundario:
2a. Si no existen chats activos, el sistema muestra un mensaje

indicando que no hay chats para mostrar.

Ej. 1: En un sistema que es un portal de noticias, realiza un caso de
uso, llamado Leer Noticia , en la que un usuario selecciona y accede a
una noticia para leerla.

51

Ej. 2: Realiza un caso de uso, llamado Buscar Producto , en la que
un cliente busca un producto que se corresponda a un criterio que
dicho cliente desee.

Precondiciones y postcondiciones
Las precondiciones son condiciones que deben cumplrse antes de que
un caso de uso o una función comiencen a ejecutarse. En un caso de uso,
las precondiciones pueden incluir cosas como la autenticación del usuario,
el estado del sistema, o cualquier otro requisito necesario para que el caso
de uso se desarrolle adecuadamente.

Las postcondiciones son condiciones que deben ser verdaderas
después de que un caso de uso o una función se ha ejecutado
correctamente. Son los resultados esperados o los cambios de estado que
se supone que ocurren como consecuencia de la ejecución de la acción
principal.

Comprar Moneda Virtual

Actores: Usuario, Banco

Descripción:
Proceso de un cliente al realizar un pago con tarjeta a través de un
sistema en línea, donde el banco gestiona la transacción.

Precondiciones:
El usuario debe haberse identificado en el sistema.

Flujo Principal:
1. El usuario selecciona la cantidad de monedas a comprar.
2. El sistema solicita la información de la tarjeta de crédito.
3. El usuario proporciona los detalles de la tarjeta de crédito.
4. El sistema envía la información de la transacción al banco para su

procesamiento y muestra un mensaje con el resultado de la
operación.

Flujo secundario:
4a. Si el banco rechaza la transacción, el sistema muestra un mensaje

52

de error al cliente y vuelve al punto 2.

Postcondiciones:
La cantidad de moneda virtual seleccionada será añadida a la cuenta del
usuario.

Notas adicionales:
• El usuario proporciona los detalles de la tarjeta de crédito.
• El sistema garantiza la seguridad de la información de la tarjeta

mediante la implementación de estándares de seguridad.
• En caso de rechazo del pago, se proporcionará información clara

sobre el motivo y las acciones a seguir.

Ej. 3: Crea el caso de uso Crear tarea , en la que se creará y
registrará una nueva tarea en el sistema. Un usuario deberá estar
identificado en el sistema para crear la tarea.

Ej. 4: Respecto a una tienda virtual, crea el caso de uso Comprar

productos , en la que el usuario seleccionará uno o varios productos y
luego procederá a pagarlos, especificando la dirección de envío.

Desglosar un paso
Es posible que un flujo principal, o en el alternativo, una tarea sea algo
compleja o que conlleve un número de pasos, para ello, se emplea una
numeración que empieza por el paso a desglosar seguido de un punto:

Cambiar foto de perfil

Actores: Usuario

Descripción:
El usuario cambiará su foto de perfil con una nueva captura fotográfica.

Flujo Principal:
1. El usuario selecciona "Cambiar foto de perfil".
2. El sistema muestra una vista de la cámara frontal.
3. El usuario realiza una fotografía.

3.1.El sistema le indica al usuario que debe encuadrar su cara.

53

3.1.El usuario encuadra su cara en la vista de la pantalla.
3.1.Cuando es sistema detecte un encuadro correcto, lo indicará al

usuario.
3.3.El usuario podrá seguir moviendo el encuadre
3.4. Estando el encuadre como el válido, el usuario pulsará “tomar

foto”.
4. El sistema tomará la foto y la establecerá como foto de perfil.

Postcondiciones:
La foto de perfil habrá cambiado.

Ej. 5: Realiza un caso de uso Silenciar notificaciones . El paso en
que el usuario selecciona la opción de “escoger opción” es un poco
compleja, pues tendrá que elegir primero entre varias alternativas (que
podría ser algo como "1 hora", "8 horas", o "Permanente"). Tras ello, el
usuario deberá confirmar su elección (si respondiese que no, se cancela
la tarea, por lo que no es necesario indicar ese hecho de seleccionar
que no en el caso de uso).

Repeticiones y cambios de paso
También es posible que se produzca saltos entre los pasos, de forma que
se indicará el paso al que se debe de saltar:

Leer noticias del día

Actores: Usuario

Descripción:
El usuario leerá las noticias del día que desee.

Flujo Principal:
1. El usuario selecciona la opción de “leer noticias del día”.
2. El sistema muestra las noticias del día.
3. El usuario lee una noticia.

3.1.El usuario selecciona una noticia que desee, o bien elige “terminar”,
en cuyo caso pasa al punto 4.

3.2.El sistema muestra la noticia seleccionada.

54

3.3.El usuario lee la noticia.
3.4. El usuario selecciona “volver”, y se pasa al punto 2.

4. El sistema cierra la lista de noticias.

Flujo secundario:
3.3a. El usuario selecciona “ver más tarde”.

Postcondiciones:
Las noticias seleccionadas como “ver más tarde” se añadirán a la lista de
“noticias guardadas”.

Ej. 6: Cambia el caso de uso de Silenciar notificaciones ,
Realizado anteriormente, de forma que, esta vez, cuando el usuario
responda que no a la confirmación, se vuelva a la selección de
alternativas.

Ej. 7: Crea el caso de uso Verificar email . El usuario introducirá
un email y el sistema enviará un correo de verificación con un código. El
usuario deberá introducir el código o bien solicitar que se reenvíe un
código nuevo. Observa que el flujo principal trata de verificar el email,
de forma que el no conseguirlo se considera una cancelación de la tarea
debido a un error. En notas, se establecerá que el uso repetido de esta
función estará limitado, por temas de seguridad.

55

2.Diagrama frontera
El diagrama frontera incluye todos los casos de uso genéricos del sistema,
enmarcados con un recuadro, dejando a los actores fuera.

Hay que recordar que existen actores primarios y secundarios, ambos
deben de representarse en el diagrama frontera (a menudo los actores
primarios se dejan a la izquierda y los secundarios a la derecha). En el
diagrama siguiente, se modela un portal de ventas de juegos de mesa en
formato pdf muy simple, que no requiere registro ni identificación:

Ej. 8: Crea el diagrama frontera de un sistema de notas (textos/notas
de recordatorio). Un usuario podrá ver la lista de notas ya creadas, crear
nuevas notas, editarlas y borrarlas.

56

Obviamente, el sistema podrá tener varios actores principales. El siguiente
es un sistema en el que el cliente podrá crear una incidencia, mientras que
un técnico podrá ver las incidencias, y también podrá resolver una
incidencia.

Ej. 9: Crea un diagrama frontera de una aplicación en la que hay dos
tipos de usuarios, el usuario normal y el usuario de pago. El usuario
podrá acceder a “generar créditos con publicidad”, y el usuario de pago
podrá “comprar moneda virtual”. Ambos usuarios podrán realizar la
tarea de “ver película”.

Ej. 10: Crea un diagrama frontera de un teléfono, donde un usuario
podrá realizar llamadas (con el número de teléfono: el sistema no posee
agenda) y podrá también recibir llamadas.

57

3.Relaciones

Interacción o asociación.
La asociación es el enlace entre actor y los casos de uso. La asociación se
representa con un linea continua entre el actor y el caso de uso. Por
ejemplo, en el diagrama frontera de Venta de juego en pdf, descrito en el
apartado anterior, existen cuatro asociaciones, una entre Comprar juego y
Entidad de pago , y otras tres entre Cliente y cada uno de los tres casos

de uso.

Generalización o especialización
La generalización/especialización ocurre entre actores, de forma que uno o
varios actores pueden interactuar con los casos de uso de la clase superior
y, además, tienen otras interacciones.

58

En el caso frontera anterior tenemos un integrante de un sistema de
Brainstorming, que puede enviar una idea al grupo de Brainstorm. El líder,
además de ser un participante, pudiendo también enviar ideas, es capaz de
realizar otras acciones. Todo lider es un participante, pero no todos los
participantes son líderes.

Ej. 11: Crea un diagrama frontera de un tablón de anuncios interno.
En el tablón de anuncios, los usuarios pueden enviar mensajes,
mientras que el administrador también puede borrarlos. El sistema
identifica al administrador usando servicios en red, por lo que ni
usuarios ni administrador tienen que identificarse o registrarse.

Ej. 12: Crea un diagrama frontera de una web de registro. Los
poseedores de una propiedad (piso, casa, chalet, etc.) podrán inscribir
su propiedad. Los que sean propietarios de una vivienda que no sea
unifamiliar (piso y similares), también podrá especificar división
(escalera, número, puerta, etc.).

Por otra parte, los inquilinos podrán también registrar la propiedad en
la que vivan. Los inquilinos de una de una vivienda que no sea
unifamiliar (piso y similares), también podrá especificar división
(escalera, número, puerta, etc.).

Es posible que varios actores hereden de un mismo actor, pero no se
permite la multiherencia: en ese caso se crea un actor nuevo con las
correspondientes asociaciones que sean necesarias.

Lo siguiente es un sistema interno (sin identificación ni registro) en el que
todos los trabajadores pueden entrar y solicitar el período de vacaciones.
Los responsables de ventas pueden también registrar períodos de alta
demanda, los capataces pueden registrar días de incidencia, y los
responsables del sindicato pueden registrar días de patronazgo.
Finalmente, los directivos pueden hacer todo lo anterior, salvo los días de
patronazgo.

59

Observa que una persona física podría ser, a la vez, un capataz y
sindicalista, o capataz y responsable de ventas, o capataz sindicalista, pero
los perfiles son distintos.

Ej. 13: Una aplicación en la entrada de un evento te pide que
escanees tu ticket para dejarte pasar. Los usuarios que tengan una
suscripción podrán usar ticket o bien su tarjeta de socio y podrán,
además, elegir un asiento en el auditorio general si así lo desean. Los
usuarios miembros VIP podrán reservar un asiento en tribuna.

También hay artistas que tienen acceso únicamente a una segunda
puerta, hacia los camerinos, y tendrán que registrar sus datos para
poder entrar (no usan ticket), tras lo cual el sistema les informará del
número de camerino. Por último los artistas invitados (artistas
famosos) pueden entrar a todos lados.

La compra y generación de entradas y la gestión de clientes es realizada
por una empresa de “ticketing” externa. Nuestro sistema, cada vez que
escanea un ticket, consulta a una web que la empresa externa tiene a
nuestra disposición.

60

4.Inclusión
La inclusión se produce cuando un caso de uso principal depende de otro
para completar su funcionalidad o cumplir con sus precondiciones.

La inclusión se representa con una flecha discontinua con la palabra
include , que empieza en el caso de uso que incluye y se dirige hacia el caso
de uso incluido. Existen tres casos en los que se emplea la inclusión.

Precondición
El primero es que el caso de uso incluido tenga una precondición que se
realiza a través de otro caso de uso. En el ejemplo siguiente, tanto cliente
como empleado deben estar identificados en el sistema para poder realizar
los casos de uso de Comprar Impresión y Procesar Envío respectivamente.
Observa que el tanto el caso de uso incluyente como el caso de uso
incluido tienen sus debidas asociaciones a sus respectivos actores:

Como decíamos, estas inclusiones se reflejarán en los casos de uso en las
precondiciones de Comprar Impresión y de Procesar Envío . Por
ejemplo:

61

Comprar impresión

Actores: Cliente

Descripción:
El usuario realiza la compra de una impresión

Precondiciones: El cliente debe estar identificado.

Ej. 14: Un sistema de identificación, el cual se halla en un sistema
informático empotrado (un USB seguro), permite la identificación

por biometría y la identificación por datos personales . En
ambos casos, sin embargo, es necesario que el usuario haya
desbloqueado el dispositivo . También es necesario que el usuario

haya registrado el dispositivo .

Realiza el diagrama frontera y cada uno de los 4 casos de uso. Para el
flujo principal de todos ellos, asume un flujo muy sencillo del estilo:

1. El usuario selecciona la opción de identificarse por datos personales
2. El sistema pide los datos personales.
3. El usuario introduce los datos personales.

Dividir un proceso complejos
El segundo tipo de inclusión es cuando un caso de uso tiene cierto paso o
conjunto de pasos no triviales, que constituyan una funcionalidad aparte
suficientemente diferenciada. Por ejemplo:

62

Recortar encimera

Actores: Obrero

Descripción:
El obrero procede a definir las formas necesarias que desea se recorten
en la tabla para encimera, y el sistema calcula la mejor forma de
hacerlo.

Flujo Principal:
1. El obrero selecciona la opción de Recortar encimera.
2. El obrero añade una o varias formas:

2.1.El obrero selecciona, tantas veces como desee “Añadir una nueva
forma”, y el sistema iniciará el caso de uso Especificar Forma,
añadiendo la nueva forma a la lista de formas.

2.2. El obrero puede seleccionar “Borrar forma”, y el sistema borrará la
forma seleccionada.

2.3. Si no hay ninguna forma en la lista, ve al punto 2.1
2.3. El obrero podrá volver al punto 2.1 o al punto 2.2

4. El obrero selecciona “Calcular corte”.
5. El sistema inicia el caso de uso Calcular Corte.
6. El sistema guarda y muestra al usuario el diseño de corte calculado.

Flujo Secundario:
6a. Si las formas no caben en la tabla base, notifica al usuario y vuelve al

punto 2.

Postcondiciones: El sistema ha guardado el diseño de corte.

Ej. 15: Un sistema de gestión financiera permite realizar diversas
operaciones al cliente. Una de ellas es realizar un análisis

financiero . Este caso de uso necesita hacer un recopilado de

datos , un análisis de mercado y, finalmente, una creación de

diagramas financieros . El análisis de mercado requiere, a su vez, un
recopilado de oportunidades financieras .

Realizar una tarea común
Por último, cuando un conjunto de pasos no triviales se realiza en distintos
casos de uso, se aíslan dichos pasos en un caso de uso aparte.

63

Ej. 16: Un sistema de scripting ejecuta pequeños programas (también
llamados scripts). El sistema permite ejecutar scripts , guardar

scripts y modificar scripts . En todos ellos se realiza un
verificar script .

64

5.Extensión
La extensión es similar a la inclusión, a excepción de que el caso de uso que
extiende no siempre empleará al caso de uso extendido. El caso más típico
es el del registro, donde al identificarse, es posible que el usuario realice el
registro, o bien puede que se identifique directamente:

La invocación de un caso de uso extendido dentro de otro, se realiza de
forma similar a la inclusión.

Ej. 17: Crea un diagrama frontera de una aplicación que es un lector
de noticias. Un usuario podrá Leer Noticias estando o no
identificado (con Identificarse), pero solo podrá Añadir a

favoritos si está identificado.

Ej. 18: Crea una diagrama frontera de una mini-tienda virtual, donde
el cliente podrá Buscar producto . Si el cliente está identificado (con
Identificarse y, si fuera necesario, Registrarse) podrá, cuando haya

encontrado el producto, Añadir Producto a la Cesta .

Además, el usuario identificado podrá seleccionar Realizar Compra , la
cual podrá o no ocasionar el caso de uso Usar Cupón .

El realizar la compra Invocará siempre, eso si, a Realizar Pago ,
empleando un actor externo de Sistema de Pago , y también usará
siempre Introducir datos de envío .

65

Finalmente, el usuario podrá Ver perfil e Introducir Dirección de

Envío .

66

6.Resumen y ejercicios
Resumen general de los casos de uso

• Los actores principales son los que realizan las tareas (realizan los
casos de uso), y los secundarios son los que son llamados por el
sistema. Los actores están comunicados con los casos de uso a
través de relaciones de asociación (líneas y no flechas).

• Es posible que un actor sea primario en un caso de uso y secundario
en otro. La comunicación entre los actores fuera del sistema (fuera
de la aplicación a desarrollar) no se refleja en los diagramas.

• Si de un caso de uso pasamos a otro directamente (ejemplo, si un
usuario va a consultar su perfil pero necesitar estar identificado, y
ello se hace de forma inmediata para luego volver), entonces se
pondrá el {include} o el {extends} que corresponda entre ambos
casos de uso. En caso contrario, si el programa no “pasa el control”
directamente al otro caso de uso, entonces no se pone {include} ni
{extends}, aunque haya prerequisito que los relacione.

• El {include} tiene la flecha desde el caso de uso “llamante” hacia el
caso de uso “llamado”, pues lo incluye. El {extend} lo tiene al revés
porque el “llamado” es extendido.

• La herencia solo es posible entre actores, y solo si el actor hijo puede
hacer todos los casos de uso del padre y puede que alguno más.
Aún así, si no hay relación entre ambos actores (ej: un cliente y un
encargado, ambos de ellos pueden realizar un “cambio de
contraseña” y luego el cliente puede “consultar perfil”), podría no
haber herencia.

Ej. 19: [1] Una clínica veterinaria almacena datos de contacto de todos
sus clientes, que son introducidos y gestionados por los auxiliares, que
ejercen las funciones administrativas.

[2] También es posible dar de alta a un nuevo animal. Un animal solo
puede pertenecer a un único cliente, pero es posible que éste cambie de
dueño. Para animales con la obligación de estar identificados, al darlo de
alta en el sistema, se comprobará el registro REIAC (Red Española de
Identificación de Animales de Compañía) para saber si el animal está
correctamente dado de alta.

[3] Cada vez que un veterinario examina un animal, dicha consulta queda
almacenada, con todo los siguiente: (1) los síntomas del animal, (2) las
recetas que se le prescriban,, (3) los tratamientos realizados, (4) los
tratamientos y cuidados prescritos. Si fuera necesario, el veterinario podrá
ordenar el veterinario el ingreso en clínica, cuya orden quedará también
registrada.

[4] Si un animal queda ingresado en la clínica, el cliente debe ser capaz de
ver, en tiempo real (a través de una cámara fija), al animal ingresado,
pudiendo ver también su historial, recetas prescritas y
cuidados/comentarios indicados por el veterinario en la consulta o
después.

[5] Mientras se está tratando al animal ingresado, todas las anteriores son
añadidas al historial.

[6] La consulta realizada a sus animales, podrán ser consultados por el
cliente desde la web.

[7] El cliente podrá realizar el pago justo tras realizar la consulta, con la
ayuda de un auxiliar. También puede identificarse en la web para hacerlo
en la siguiente semana.

[8] La identificación de los clientes en la web se realiza con un usuario y
clave, pero el registro se hace a través de los auxiliares, en la clínica. Los
auxiliares y veterinarios no han de identificarse (ésto se realiza de forma
automática, pues cada uno usa su propio sistema informático).

[1] Este párrafo nos indica un caso de uso llamado Alta de cliente , que es
realizado por un actor llamado Auxiliar . Se considera que es el auxiliar el
que realiza el proceso (habla con el cliente, recibe sus datos por teléfono o
por email, etc.), por lo que, en dicho caso, el cliente no forma parte del caso
uso.

En caso de que el cliente usara la aplicación a desarrollar (se le enviara un
enlace que tuviera que rellenar, usara una aplicación nuestra en el móvil, etc.),
entonces el cliente formaría parte del caso de uso, y habría que asociarlo con
una línea, NO con una flecha) al caso de uso.

[2] Nos indica el caso de uso Alta de Animal , con las mismas
consideraciones respecto al cliente que en [1]. En todo caso, podría ser que

tengamos que consultar el sistema externo llamado REIAC , por lo que
enlazamos a ese actor, que sería actor secundario) con el caso de uso.

Si se considerase un caso de uso para hacer la conexión con REIAC (por
ejemplo, Consulta con REIAC), éste caso de uso estaría conectado con
Alta de animal con un {extends} desde Consulta con REIAC el hacia
Alta de animal . Sin embargo, la consulta parece ser más bien solo un paso

en el flujo secundario de Alta de Animal , por lo que evitamos esta opción.

En este párrafo también se indica que es posible un cambio de dueño. Será
un caso de uso realizado por el Auxiliar. En este caso, si el nuevo dueño no
está en el sistema, tendremos que hacer un Alta de cliente , algo que se
realizará al momento, por lo que supone un {extends} con dicho caso de uso.
Observa que, en caso de que el animal no estuviera dado de alta, entonces no
se podría hacer un cambio de dueño, sino simplemente sería un alta de
animal.

[3] Nos indica que el veterinario realiza el caso de uso Consulta y, el de
Ingreso en clínica . Éste último siempre se realizará a partir del primero,

pero no siempre. Por tanto hay una relación de {extends}. Ambas tareas son
iniciadas y realizadas por el Veterinario, por lo que deben estar enlazadas a él
con una asociación (una línea).

Observa que la dirección de la flecha de {extends} es al contrario que la de
{include}. En este caso, Consulta llama a Ingreso en clínica (aunque no
sea siempre), por lo que la flecha va desde el primero al segundo. Si la
llamada fuera siempre (si siempre que se hace una consulta se ingresara en
clínica, entonces sería un include con la dirección de la flecha al revés.

El sistema no nos indica aquí que un animal deba estar registrado para ser
consultado pero, en vista de lo dicho en [2], es posible que esto sea necesario.
En ese caso, nos planteamos si hay que realizar un {include} o un {extends}
hacia Alta de animal . En principio, son procesos distintos, puesto que la
tarea de Alta de animal puede haberse realizado mucho antes, por lo que
no habría {include} ni {extends}. Existe una dependencia NO funcional que se
materializará en un prerequisito, pero no habrá {include} ni {extends}. Si, por

el contrario, se decidiera que la consulta conlleva a un Alta de animal en
ese mismo momento, entonces habría un {extends} desde Alta de Animal a
Consulta .

[4] Se crean los casos de uso Ver animal y Ver historial que son
asociados al actor principal Cliente . Todos los objetos de recetas,
tratamientos y demás son objetos, pero no son casos de uso ni actores.
Podrán aparecer en los flujos principales y secundarios de los casos de uso,
pero no en el diagrama frontera.

[5] Este párrafo indica que, mientras un animal está ingresado, se realiza una
consulta, aunque no se aclara cuándo sucede esto. No se añadiría nada al
diagrama, pues el caso de uso Consulta ya está.[6] Vuelve a incidir en el caso
de Ver historial , que ya está hecho. Nos queda claro, si no lo estaba ya,
que Ver historial y Ver animal son independientes.

[7] El pago puede realizarse a través de la web directamente por el Cliente ,
por lo que creamos un caso de uso llamada Pago por web , y lo asociamos
con el actor en cuestión. El pago por consulta será realizado por el auxiliar, y
tiene las mismas consideraciones que Alta de cliente o Alta de animal

respecto a enlazar a Cliente o no.

[8] Finalmente, el Identificarse , por parte del cliente, será un caso de uso
que será incluido por los 3 casos de uso relativos a la web. En cuanto al
registro, éste debe ser realizado por el auxiliar. Consideramos que es parte
de Alta de Cliente , Si tuviera entidad para ser un caso de uso aparte,
habría una flecha de {include} desde Alta de animal hacia Registro .

Ej. 20: Realiza el caso de uso Consulta del ejercicio anterior.

En este caso de uso tan solo se trata de que el sistema pida información de
las consulta, y el veterinario introduzca los datos de la consulta. Respecto a

estos datos, el enunciado deja claro que hay 4 apartados de información
(Síntomas”, “Recetas” “Tratamientos realizados”, “Tratamientos y cuidados
prescritos”). Aunque podríamos haber agrupado todas estas opciones en
algo como pedir o insertar datos de consulta, ya que parece que el
procedimiento de la consulta es algo claro, se han puesto ya esos apartados.
Si esto no fuera así, más tarde tendríamos que arreglarlo, lo que sería un
coste en nuestro desarrollo.

Aparte de los 4 apartados citados, existe un quinto que es el de “ingreso en
clínica”. Este apartado se resuelve llamando al caso de uso “Ingreso en
clínica”, que será el encargado de guardar los datos relativos a ese ingreso.
Observa que, tras la llamada, se sigue el flujo, que en este caso será volver al
punto 2.1. También sería correcto modelar lo de “ingreso a clínica” usando un
flujo alternativo.

Consulta

Actores: Veterinario

Descripción:
El veterinario realizará una consulta a un animal y registrará los
tratamientos y recetas

Flujo Principal:
1. El veterinario selecciona "Consulta".
2. Se introducen cada uno de los datos de la consulta.

2.1. El sistema pide que se seleccione entre “Síntomas”, “Recetas”
“Tratamientos realizados”, “Tratamientos y cuidados prescritos”,
“ingreso en clínica” o “Terminar”.

2.2.El veterinario selecciona una de las opciones.
2.3.En caso de que se haya seleccionado “Terminar”, se termina.
2.3.En caso de que se haya seleccionado “Ingreso en clínica, se llamará al

caso de uso “Ingreso en clínica”, y se vuelve a 2.1
2.4.El sistema le pide al veterinario que ingrese la información relativa a la

opción seleccionada
2.5. El veterinario introduce dicha información.
2.6. El sistema guarda la información y vuelve al punto 2.1

Postcondiciones:
La consulta habrá quedado grabada en el sistema

Ej. 21: Un gimnasio quiere implementar un sistema para gestionar
reservas de sus clases.

[1] El registro de clientes es realizado por el encargado del gimnasio en el
propio gimnasio, proporcionando al cliente los datos de acceso a la web
(login y contraseña). El encargado no ha de identificarse ni registrarse en
el sistema, pero el cliente si tiene que hacerlo para todo lo siguiente.

[2] Los clientes pueden reservar clases pero, para completar la reserva,
deben realizar un pago (un proceso complejo de por sí) el cual debe ser
validado por un proveedor externo de pagos.

[3] Los clientes pueden cancelar sus reservas y modificarlas. Puesto que
las clases tienen distintos precios, el modificar una reserva puede
conllevar un pago, al igual que en la reserva. Cancelar una reserva, o
modificar a una reserva hacia una de menor valor supone la pérdida del
dinero correspondiente.

[4] El cambio de contraseña puede ser realizado por el encargado del
gimnasio, o bien en la web, por el cliente.

[1] El registro de clientes se realiza por parte del Encargado. Como el
recabado de datos lo hace el encargado (por lo general, hablando
directamente con el cliente cuando acude al mostrador del gimnasio), este
proceso se hace fuera del sistema y no hay que reflejarlo. Por tanto, creamos
el caso de uso de Registro asociado únicamente con el Encargado.

Dejamos pendiente la identificación del cliente para modelarla para más
tarde.

[2] Los clientes pueden Realizar reserva pero, una parte integral e
indispensable es Realizar pago que, al ser un proceso complejo, posee su
propio caso de uso. Al ser un paso obligado, los conectamos con un {include}.
Como este caso de uso necesita al actor secundario de la plataforma de pago,
lo conectamos con ella: este actor NO estará conectado al caso de uso de
Realizar reserva .

[3] Añadimos los casos de uso Modificar reserva y Cancelar reserva ,
realizados por el cliente. En caso del primero, es posible recaer en un pago
adicional, dado que la nueva reserva sea más cara, por lo que conectamos
con Realizar pago con un extends (si la nueva reserva vale igual o menos,
no se necesitaría ese pago adicional).

[4] Creamos dos casos de usos distintos relativos a cambiar contraseña, ya
que estimamos que el proceso sería distinto (en uno el cliente debe estar
identificado, etc.). En caso de que fuera el mismo proceso, entonces sería un
mismo caso de uso con ambos conectados a él.

Finalmente, conectamos todas la operaciones del cliente con el caso de uso
Identificarse , que habíamos dejado pendiente en [1].

Ej. 22: Realiza el caso de uso Realizar reserva.

En este caso de uso, realizamos una llamada a otro caso de uso, el de
Realizar Pago . Todo lo relacionado con éste (el pedir datos, la

comunicación con el actor secundario, etcétera, quedan en su ámbito, y no
son incluidos aquí: observa que el único actor de este caso de uso es el
cliente, y la grabación del pago no se realiza aquí.

Realizar reserva

Actores: Cliente

Descripción:
El cliente selecciona y realiza la reserva de una clase.

Precondiciones: el Cliente debe estar identificado.

Flujo Principal:
1. El veterinario selecciona "Realizar reserva".
2. El cliente pide al usuario que seleccione una clase de entre las que haya

con plazas libres.
3. El usuario selecciona una clase.
4. El sistema llama al caso de uso “Realizar Pago”.
5. El sistema guarda la reserva.

Flujo secundario:
5a. Si el pago no se realiza con éxito, vuelve al punto 2.

Postcondiciones:
La reserva queda guardada.

En cuanto al flujo secundario, aunque trata sobre un error, al producirse ese
error no se cancela la tarea ni se re-intenta en el mismo paso (en vez de ello,
se redirige al punto 2), por lo que se incluye como un flujo secundario en vez
de obviarse.

Ej. 23: Tenemos una aplicación web para recomendar libros. El
administrador de la web puede subir los datos de un libro (título, autor,
etc.), junto con una valoración opcional.

Por su parte, los usuarios pueden realizar comentarios del libro, así como
compartir la página web del libro, valoración y comentarios por red social,
algo que precisa de una entidad externa llamada “Red Social”.

Todos los usuarios deben identificarse y, en su caso, registrarse en la web.
El administrador también es capaz de comentar y compartir.

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 4: 4:

1. Diagramas de1. Diagramas de
EstadoEstado

1.Elementos
Los diagramas de estado muestra los distintos estados que un sistema
adopta, y ante qué eventos puede dicho sistema pasar de un estado a otro.
Los diagramas de estado no tienen en cuenta las actividades realizadas por
el sistema, solo ciertos eventos ocurridos que hagan cambiar su estado.

Inicio
Representa el inicio de del diagrama de estados. Tan
solo puede existir uno de estos símbolos, y éste
apuntará siempre a un único estado, que será el
estado inicial.

Estado
Indica un estado posible del sistema.

Evento
Un evento es una ocurrencia que puede causar la
transición del sistema de un estado a otro.

Nota
Permite añadir notas a los distintos elementos del
diagrama de estados.

Finalización
Establece el estado final del diagrama de estados, y
representa la conclusión de todos los eventos.

El siguiente diagrama de estados refleja un diagrama de los estados de un
sistema que realiza envíos de paquetes, y éstos pueden ser devueltos o no.
Se envía, como máximo, dos veces un paquete: si es devuelto dos veces, se
queda como devuelto, en caso contrario quedará como recibido.

77

Observa que iniciamos desde un estado de Paquete enviado , puesto que
se considera que siempre se envía, sin excepción. En este caso, poner un
estado previo del estilo Paquete a enviar no tiene sentido, a menos que
quisiéramos resaltar el evento de envío, o bien si el paquete pudiera no ser
enviado en ciertas circunstancias (dirección desconocida, paquete
defectuoso, etc.).

Otro ejemplo. Tenemos una campana extractora de cocina. Tiene un
botón de apagado (si es pulsado, se apaga todo), un botón para encender o
apagar la luz y otro para encender o apagar la función extractora:

78

Ej. 1: Realiza el diagrama de un dial, que
inicialmente estará apuntando al 0 . El dial puede
ser manipulado para que pase al 1 , al 2 , al 3 y,
finalmente, al 4 , y también se podrá volver a
posiciones inferiores. En principio, no podría pasar
directamente del 4 y el 0 ni viceversa. De cara a
los elementos de inicio o fin, el objetivo es
establecer un valor y, posteriormente, volver al 0 .

¿Qué cambiaría en el diagrama de estados para
que si se pueda cambiar entre el 0 y el 4 ?

Ej. 2: Realiza un ejercicio que modele una máquina expendedora. La
máquina puede recibir solamente monedas de 0,5€, 1€ y 2€. El único
producto que vende es de 2€. La máquina saca el producto en cuanto
tiene dinero suficiente, expulsando el resto de monedas que excedan 2€
¿Es posible que la máquina no pueda devolver el cambio completo?

79

2.Eventos de salida
Los diagramas de estados son buenos indicadores de cuando un sistema
debe producir un evento de salida. El siguiente diagrama corresponde a un
sistema que va recibiendo unos y ceros y detecta cuando la ha llegado la
marca de fin, compuesta por tres unos seguidos. El estado llamado 111

posee una salida, FINAL :

Observa, además, que en este diagrama hay un evento que, de ocurrir,
lleva al mismo estado.

Ej. 3: Realiza el diagrama de estados de un calentador con
termostato. El calentador comprueba continuamente la temperatura y,
si ésta es mayor que la temperatura establecida, se apaga, en caso
contrario, se enciende.

Añade luego los eventos en los que se cambia la temperatura
establecida.

Ej. 4: Realiza el diagrama de estados de una máquina expendedora.
En dicha máquina, es posible introducir monedas, tras lo cual puede
seleccionarse uno de los productos, y entonces la máquina sacará el
producto y devolverá la cantidad restante.

Sin embargo, es posible que la cantidad de monedas no sea suficiente
para el producto, o que el producto esté agotado, en cuyo caso la
máquina volverá a pedir una selección. También es posible que el exista
un error, o bien que el usuario pulse el botón de cancelar, en cuyo caso
se devuelve el dinero.

Ej. 5: En D&D, cuando tu personaje pierde todos sus puntos de vida,
cae moribundo. Cada turno, lanzas un dado de veinte y, según la
siguiente tabla, sufre los siguientes efectos:

80

1: dos puntos , 2-10: un punto , 11-19: un punto , 20: dos💀 💀 ❤️
puntos .❤️

Si el personaje acumula tres o más puntos de (independientemente💀
de los puntos que tenga), muere. Si acumula tres o más puntos de❤️

 (independientemente de los puntos que tenga), se estabiliza. Haz❤️ 💀
un diagrama que modele este sistema.

Ej. 6: En 1989, la editorial R. Talsorian Games publicó el juego, creado
por Mike Pondsmith, “Cyberpunk”, junto a una segunda edición
“Cyberpunk 2020” en 1990, que fue traducida el español y, varios años
después, en 2005, una tercera versión “Cyberpunk V3.0” que tuvo
mucha peor acogida. La segunda versión de este juego de rol fue
considerado, en 1996, uno de los 10 juegos más populares de todos los
tiempos. El juego está ambientando en el año 2013 (2020 en la segunda
edición, 2030 en la tercera edición).

Mucho tiempo después, en 2020, el estudio CD Projekt RED creó el
videojuego “Cyberpunk 2077”, ambientado en el mismo año, sacando
también el juego de rol asociado Cyberpunk RED”, basado en los juegos
de rol, aunque se establece la tercera edición como una versión
alternativa no contemplada para esta continuación. Este videojuego dio
origen la serie animada “Cyberpunk: Edgerunners”, ambientada en el
mismo año y creada por Studio Trigger.

Todo este universo está originado por las novelas de los ‘80,
especialmente “El neuromante” de William Gibson”, que originó una de
las películas más míticas del género, "Blade Runner" (publicada en 1982)
ambientada en 2019, que tuvo un remake llamado Blade Runner 2049
(publicada en 2017), ambientada en dicho año.

Crea un diagrama de estados por los que ha pasado el universo de
Cyberpunk. Como estados, emplea los nombres de juegos o series,
tales como “Cyberpunk 2077, ambientado en 2077”. Como transiciones,
emplea el nombre de la editorial o estudio que hizo la nueva creación y
el año, por ejemplo “R. Talsorian Games, 1990”.

81

Ej. 7: Realiza el diagrama de estados de una llamada telefónica.
Cosas como “pulsar un número” NO serán un evento, sino que lo serán
cosas como “introducir un número telefónico”.

Ej. 8: Realiza el diagrama de estados de un mensaje de correo
electrónico.

Considera que todos los correos son internos a un mismo servidor de
correo.

Ej. 9: Realiza un sistema de autentificación de PIN telefónico, donde
el usuario debe introducir su PIN para iniciar el móvil. Si la clave es
introducida mal 3 veces, el sistema se desactiva.

Para activarlo, puede introducirse un segundo código (que viene con la
tarjeta telefónica) que, si es introducido correctamente, el sistema
esperará para poder introducir un nuevo pin. Tras introducir el nuevo
pin, el teléfono se inicia (no hay que introducir nuevamente el pin para
iniciarlo).

Sin embargo, si se introduce mal el código de activación 3 veces, la
tarjeta se bloquea definitivamente.

82

En este diagrama de estados, el estado inicial será uno en el que todavía no
hayamos realizado ningún intento, puesto que desde el símbolo de inicio
(el punto de arriba a la izquierda) hasta el estado inicial no puede existir
ninguna transición (solo una flecha). Este estados se ha llamado “o intentos
inicio” (podríamos haberlo llamado “inicio” o “reposo”).

A partir de ahí, están los 3 estados de 0, 1 y 2 intentos fallidos. Si, estando
en cualquiera de ellos, realizamos un éxito de inicio (EI), el teléfono se
iniciará y terminamos. Si, por el contrario, realizamos un fallo de inicio (FI),
nos iremos a donde haya más intentos de inicio fallidos (de “0 intentos de
inicio a 1, etcétera). Sin embargo, no hay un estado de ”3 intentos de
inicio”, puesto que si se han realizado 3 intentos, el teléfono está ya
desactivado.

En cuanto a los intentos de activación, sería similar, con los “Fallos de
activación” (FA) haciendo progresar de estado. Tampoco existe un “3
intentos de activación”, porque en ese punto el teléfono está ya bloqueado
y ahí terminaríamos.

En caso de estar el teléfono desactivado, si conseguimos un “éxito de
activación” (EI), entonces se nos pedirá un nuevo pin y, tras ponerlo el
usuario, nos vamos a un teléfono activado directamente. Observa que,
desde el estado “espera nuevo pin” solo hay una transición posible, hacia
“iniciado”.

Ej. 10: Realiza el diagrama de estados de un proceso de compra en
un ecommerce. Los estados incluyen: "Cesta vacía", "Cesta con
productos", "Proceso de pago", "Pago exitoso", "Pago fallido", "Compra
confirmada" y otros. Considera transiciones basadas en las acciones del
usuario y de la plataforma de pago, y unos estados basados en el
estado de la cesta/compra.

Aquí, no es posible, ni interesante, controlar el número exacto de artículos
que tiene la cesta, tan solo es necesario controlar si está vacía o no, puesto
que de estarlo, no cebe ser posible el procesar pedido.

83

Ej. 11: Realiza el diagrama de una máquina electrónica de café. La
máquina estará, inicialmente, apagada. El usuario deberá pulsar un
botón para encenderla, momento en el que la cafetera encenderá una
luz y esperará que el usuario introduzca café y elija un programa. La
cafetera empezará cuando ambas cosas se realicen, puesto que tiene
un detector de peso para saber si se ha introducido café o no. Nota que
es posible cambiar el programa mientras no se haya iniciado.

Cuando el programa está en funcionamiento es posible que ocurran
varias cosas: (1) el usuario cancele el programa, (2) se produce un error

84

(3) se completa el programa seleccionado o (4) el usuario apaga la
cafetera. La máquina entonces volverá a solicitar un programa.

Considera que el proceso finaliza cuando se vuelva a apagar la cafetera.

Ej. 12: Realiza el diagrama de un conjunto de semáforos que controla
una intersección en forma de T, donde hay una calle principal (los lados
izquierdo y derecho) y un acceso secundario (la parte hacia abajo),
donde el tráfico es mucho menor.

Por defecto, los semáforos permiten el tráfico en la cale principal y
bloquean el tráfico desde la calle secundaria. Cuando un coche es
detectado en la calle secundaria, pueden suceder dos cosas: (1) si no
hay tráfico en la calle principal, se permite el paso a la calle secundaria
por 20 segundos y luego se da preferencia de nuevo a la calle principal.
(2) Si hay tráfico en la calle principal, esperamos 30 segundos antes de
dar paso al acceso secundario durante 20 segundos y también
volvemos luego a dar preferencia a la calle principal.

También es posible que suceda otro evento, que es que sean las
11:00pm, en el que el semáforo se establece con luz amarilla
intermitente hasta las 7:00am, donde se vuelve al estado normal,
empezando con la preferencia a la calle principal.

Ej. 13: Un PNJ de un juego tiene está, por defecto, quieto. Si se pulsa
sobre él, éste recitará una misión (pulsar de nuevo mientras recita la
misión no tendrá efecto. Una vez complete de recitar su misión, podrán
pasar 3 cosas.

(1) El usuario podrá declinar la misión propuesta, en cuyo caso el PNJ
dirá alguna frase y luego volverá al estado inicial. La misión seguirá
disponible si se pulsa de nuevo sobre el PNJ.

(2) El usuario podrá aceptar la propuesta, en cuyo caso el PNJ dirá
alguna frase más y entonces el usuario podrá ir a obtener todas las
condiciones de la misión. Considera que cada una de estas condiciones
es independiente, pero pueden ser varias. Cuando todas están
satisfechas, el usuario puede volver a hacer click en el PNJ, que dirá
algo más y la misión ya no volverá a estar disponible.

85

Ej. 14: Haz el diagrama de estados de una aplicación de cámara. La
cámara podrá establecer parámetros de zoom, flash y filtro, aunque
tiene unos parámetros por defecto. En todo caso, el botón para realizar
la fotografía solo estará activo cuando haya iluminación suficiente, a
menos que el uso del flash esté activado. Cuando se pulse el botón
para hacer la fotografía, ésta se guardará en la galería, y se dará opción
a compartirla (una vez se selecciona compartir, los pasos siguientes
pertenecen al sistema, no a nosotros). En ambos casos, se llega de
nuevo al estado inicial (se considera final ya en este punto).

Ej. 15: [ej. examen] Realiza el diagrama de estados de un sistema de
autentificación de una puerta con apertura automática a través de un
pin numérico.

La puerta, inicialmente cerrada, esperará a que sea insertado un PIN y,
si éste es correcto, la puerta se abrirá. Tras pasar 30 seg, la puerta se
cierra (se considera ésto como la finalización del diagrama de estados).

Si el PIN es introducido incorrectamente, no sucederá nada pero, si la el
pin es introducido mal 2 veces, la puerta se bloquea, no admitiendo pin
ninguno. Pasados 10 minutos, la puerta vuelve al estado de reposo
(estableciéndose el número de intentos fallidos a 0).

Desde el interior, si la puerta está bloqueada, es posible accionar un
pulsador y la puerta se abrirá durante 1h, tras lo cual se cerrará
(estableciéndose el número de intentos fallidos a 0).

Ej. 16: [ej. examen] Crea el diagrama de estados de un programa de
facturas. El usuario podrá añadir o eliminar productos a una lista de
artículos (considera que el evento de "añadir artículo" incluye también
especificar artículo). Una vez seleccionados los artículos deseados, el
usuario seleccionará "continuar", en ese caso, el programa pedirá los
datos del destinatario. Si el destinatario es una empresa, aplicará un
porcentaje de descuento preestablecido, en caso contrario, no se
aplicará descuento. Finalmente, el sistema generará la factura.

Especifica, de alguna forma en lenguaje UML, las situaciones en las que
una factura es, finalmente, creada.

86

	Unidad Didáctica 1: Sistemas informáticos
	1. Sistema informático
	Capas de un sistema informático

	2. Hardware
	Arquitectura
	Sistemas actuales

	3. Sistema operativo
	Sistema de arranque
	Funciones de un sistema operativo

	4. Aplicaciones
	Coste de desarrollo
	Plataformas de una aplicación

	Unidad Didáctica 2: Etapas del desarrollo
	1. Desarrollo del software
	El modelo en cascada

	2. Análisis
	Planificación
	Obtención de los requisitos
	Casos de uso
	Otras tareas

	3. Diseño
	Diseño arquitectónico
	Selección de tecnologías
	Modelado de datos
	Interfaz de usuario
	Diseño del plan de pruebas

	4. Codificación
	Compiladores e intérpretes
	Frameworks y librerías
	Tipos de lenguajes

	5. Prueba
	6. Mantenimiento
	Explotación
	Mantenimiento

	7. Documentación
	8. Ciclos de vida software
	Modelo en Cascada
	Modelo en Espiral
	Desarrollo Ágil
	Modelo en V
	Modelo RAD

	9. Herramientas
	Clasificación

	Unidad Didáctica 3: Casos de uso
	1. Casos de uso
	Actores
	Flujo principal, descripción y notas
	Flujos alternativos
	Precondiciones y postcondiciones
	Desglosar un paso
	Repeticiones y cambios de paso

	2. Diagrama frontera
	3. Relaciones
	Interacción o asociación.
	Generalización o especialización

	4. Inclusión
	Precondición
	Dividir un proceso complejos
	Realizar una tarea común

	5. Extensión
	6. Resumen y ejercicios

	Unidad Didáctica 4: 1. Diagramas de Estado
	1. Elementos
	2. Eventos de salida

