
ApuntesApuntes

WebWeb

P r o f e s o r : J . A . S a m p e d r o

I E S V i r g e n d e l C a r m e n (J a é n)

Índice

Parte I: HTML

UD 1: Tecnologías web
1. Petición web..................................9

2. La red TCP/IP...............................10

4. Direcciones web..........................13

5. Opciones a la URL.......................15

6. DNS...19

7. Obtener un recurso web...........24

UD 2: HTML 5
1. Lenguaje de marcas...................29

2. Guía de estilo..............................31

3. Estructura básica........................33

4. Elementos básicos......................34

5. Elementos phrasing....................36

Parte II: Programación
básica

UD 1: Instalación del entorno
1. Instalación en Linux...................49

2. Entorno VSCode..........................55

3. ¿Qué es un programa?...............59

4. El primer programa....................60

5. Ejecutar el programa..................61

UD 2: Variables y operaciones

1. Variables y tipos..........................63

2. Inputs y Alerts.............................65

3. Cadenas.......................................66

4. Números......................................70

5. Booleanos....................................74

6. Ejercicios adicionales.................77

UD 3: Condicionales
1. Condicional simple.....................81

2. Anidar condicionales..................85

3. Estructura else if.........................87

4. Cláusula else................................89

5. Ejercicios adicionales.................91

6. Ejercicios de refuerzo.................92

UD 4: Listas
1. Listas..101

2. Ejercicios adicionales...............106

UD 5: Bucles
1. Bucles while...............................109

2. Bucles for...................................118

3. For tradicional...........................122

4. Bucles anidados........................124

5. Ejercicios adicionales...............128

6. Ejercicios avanzados................133

UD 6: Funciones
1. Definición...................................137

2

2. Invocar una función.................138

3. Argumentos...............................140

4. Return..142

5. Funciones anónimas................144

UD 7: Typescript

Parte III: Programación
avanzada

UD 1: Expresiones regulares
1. Busquedas literales..................151

2. Clases de caracteres.................154

3. Multiplicadores.........................159

4. Grupos de captura...................161

5. Marcas..163

UD 2: Closures
1. Closures.....................................167

UD 3: Programación
funcional

1. Introducción..............................171

2. Transformar elementos...........172

3. filtrar elementos.......................177

4. Reducir array.............................180

5. Detectar y buscar elementos..188

6. Crear flujo desde cadena........191

7. Concaternar flujos....................194

8. foreach.......................................195

9. Transformar flujos....................198

Parte IV: Servidor Node

UD 1: Gestión del proyecto
1. Iniciar proyecto.........................203

2. Scripts...206

3. Instalación de paquetes..........207

4. Servir proyecto..........................209

5. Empaquetadores......................211

UD 2: Servidor web propio
2. Crear el servidor.......................217

3. Rutas..220

UD 3: Crear proyecto React
1. Create React App......................225

2. Vite..227

3. Main y componente principal.228

4. Modificando app.......................230

Parte V: Instalación web

UD 1: Instalación de Apache2
1. Instalación.................................239

2. Estado del servidor..................241

3. Uso de systemctl......................244

4. Desinstalación...........................246

5. Mime..247

UD 2: Directivas de
configuración

1. Ficheros de configuración.......251

2. Directivas de contexto.............254

3

3. Directivas de acceso.................260

4. Directiva Options......................262

5. Configuración de directorio....266

6. Configuración inicial.................269

UD 3: Gestión de módulos y
configuraciones

1. Configuración y activación......273

2. Módulo mod_alias....................276

3. Módulo mod_autoindex..........278

4. Módulo mod_deflate................280

5. Módulo mod_dir.......................281

6. Módulo mod_mime..................283

7. Módulo mod_reqtimeout........286

8. Módulo mod_status.................287

9. Configuración Security.............288

10. Módulos y configs por defecto
...289

11. Instalación de módulos.........290

UD 4: Host virtuales
1. Directiva VirtualHost................293

2. Parámetros de Virtualhost......295

Parte VI: Plataformas

UD 1: Virtualbox

1. Instalar VirtualBox....................301

2. Descargar ISO...........................303

3. Crear máquina..........................304

4. Guest Additions........................306

5. Configurar la red.......................308

UD 2: Instalar Wordpress
1. Apache2.....................................311

2. Instalación de PHP...................312

3. Instalar MariaDB.......................313

4. Despliega Wordpress...............314

5. Instala Wordpress.....................315

6. Configuración de red...............316

Parte VII: Herramientas

UD 1: Git
1. Configuración............................321

2. Iniciar un repositorio................325

3. Desarrollo en local...................327

4. Área de índice...........................330

5. Commit......................................332

6. Checkout y merge.....................337

7. Stash...338

8. Merge vs rebase.......................340

9. Fetch, pull y push......................343

4

PPARTEARTE I: I:

HTMLHTML

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 1: 1:

Tecnologías webTecnologías web

1. Petición web

Los entornos web hacen uso de una enorme cantidad de tecnologías, normas y
protocolos con el fin de asegurar la seguridad, la estabilidad y la privacidad.

En el siguiente diagrama se ilustra, de forma simplificada, los pasos necesarios
para acceder a una página web, empezando por el momento en que el usuario
introduce una URL en el navegador o pulsa un enlace.

9

2. La red TCP/IP
Las tecnologías web, al igual que otros muchos campos del área de las
telecomunicaciones, hacen uso de la red Internet y resto de subredes así como de
la enorme cantidad de tecnologías usadas en ellas. Dichas tecnologías, sin
embargo, no entran en la competencia del desarrollo web, por lo que no serán de
objeto de estudio aquí, aunque conviene conocer algunos aspectos:

• Toda máquina conectada a Internet tiene una IP pública.
• Estas máquinas se encuentran escuchando en uno o más puertos. Los

servidores web, típicamente, escuchan en los puertos 80 y 443, aunque también
hay puertos típicos como el 8080.

• Cuando queremos comunicarnos con un servidor web, primero debemos
realizar una conexión TCP especificando IP y puerto. Si el servidor no está
escuchando en ese puerto, la conexión no será posible.

• Si el servidor está escuchando, y el firewall no lo impide, entonces se establece
la conexión y se podrá producir la comunicación (en ambas direcciones) entre
el servidor y el cliente, empleando los protocolos HTTPS y HTTP.

Ej. 1: En una terminal, ejecuta el siguiente comando, el cual crea un
servidor sencillo que escucha en el puerto 5000:
printf '%s\n' '#!/bin/sh' 'while IFS= read -r l; do l=$(printf "%s"

"$l"|tr -d "\r"); case "$l" in HELLO) echo Hola;; DATE) date;; EXIT)

exit 0;; *) echo "Error";; esac; done' >/tmp/t.sh; chmod +x

/tmp/t.sh; socat -v TCP-LISTEN:5000,reuseaddr,fork EXEC:/tmp/t.sh

Ahora, en una terminal distinta, realiza una conexión de red con el servidor
con el comando nc 127.0.0.1 5000 . Prueba a poner los comandos HELLO,
DATE, EXIT u otro inventado (en cuyo caso debería dar error), para ver el
resultado.

Ej. 2: Averigua la IP de tu equipo con el comando ifconfig . Realiza la
conexión de red con el equipo de un compañero y vuelve a probar los
comandos antes mencionados.

10

Máquinas con varias IPs
Algunas máquinas poseen varias IPs, lo que puede tener varios objetivos, como es
el aumentar el caudal de tráfico entre la máquina e internet (balanceo de carga),
el ofrecer dominios webs con IPs exclusivas (IPs dedicadas), aumentar la
confiabilidad de la conexión a Internet (conexiones múltiples), conectar con redes
privadas (LANs) etcétera.

UDP
En vez de TCP, en algunos servicios de red también se puede usar UDP, que no
está orientado a la conexión y, por tanto, no garantiza que los datos lleguen a su
destino ni en el mismo orden en que fueron enviados. A cambio, es más rápido y
ligero, empleándose en aplicaciones donde la velocidad es más importante, como
en streaming, videollamadas, juegos en línea o el servicio de DNS. UDP también
necesita la IP y el puerto en el que la máquina a la que queremos enviar la
información está escuchando.

11

3.

12

4. Direcciones web
Lo primero que debemos tener para conseguir un recurso web es su dirección
web, llamada URL (Uniform Resource Locator). La URL se encarga de dos cosas:

1) Identifica un recurso web, que puede ser un fichero, una página web,
etcétera.

2) Indica cómo puede conseguirse dicho recurso web.

La URL no debe confundirse con URI: éste último puede identificar otros tipos de
recursos y, a diferencia de las URLs, no obliga a especificar el cómo conseguirlos.
Ejemplos de URIs que no identifican dónde acceder al recurso pueden ser:

• mailto:someone@example.com Identifica un correo electrónico, pero no
cómo acceder a dicho correo.

• Isbn:978-3-16-148410-0 identifica un libro, pero no cómo acceder a él.

Estructura básica de una URL
Respecto a la estructura básica de una URL, aunque existen URLs sin el
componente “máquina”, en la práctica tiene la siguiente estructura mínima:

esquema://máquina/ruta

Así por ejemplo, en las siguientes direcciones web, identificamos en rojo el
esquema, en naranja la máquina y en verde la ruta:

• http://www.phy.mtu.edu/faculty/Nemiroff.html
• https://wikimedia.org/static/images/project-logos/enwiki-1.5x.png

• http://duckduckgo.com/ (suele servir el index.html de ese directorio)

• https://en.wikipedia.org/wiki/Subdomain

• ftp://ftp.ubuntu.com/ubuntu/dists/xenial/Release

• file:///home/samar/Escritorio/client.html (no tiene máquina)

13

http://duckduckgo.com/(e

Es común que los navegadores completen las direcciones que se introduzcan en
sus barras de direcciones. Así, por ejemplo, http://duckduckgo.com realmente
NO es una dirección web válida (la ruta no puede ser vacía), pero el navegador
añade la barra final, para formar la dirección http://duckduckgo.com/ que sí es
válida.

Ej. 3: ¿Cuál de éstas URLs es válida?
 • google.com/url
 • http://nasa.gov/img.mkv
 • https://nasa.gov/img.mkv/
 • ftp://nasa.gov/
 • nasa.gov

Dominio, subdominios y DNS
Los nombres de máquina se componen de una o más etiquetas, separadas por
puntos. Cada etiqueta tiene un mínimo de 1 carácter y un máximo de 63, que
pueden ser letras inglesas, números o guiones, no habiendo diferencia entre letras
mayúscula y minúsculas. Además, no se permiten guiones seguidos ni guiones al
inicio ni al final.

• hi.hola_.com ← Incorrecto: termina en guion
• ho__la.org ← Incorrecto: guiones seguidos

• _hi.uk ← Incorrecto: no puede empezar por guion

• hola..net ← Incorrecto: min. 1 carácter

• www.hola.es ← Correcto

Cada una de esas etiquetas se llama subdominio, excepto la etiqueta a la derecha,
que es un dominio de alto nivel (por ejemplo com, org, net, es, uk, etćetera).

Ej. 4: Indica los nombres de máquina son incorrectos y el porqué:
lllll.net wey_ _wey.jp enseñar.es br.br.br MAYUSCULAS.ORG
1234.com guión.ar uno1.fr hablar_.fi ecuador1.ec
hola que tal.com _ap.com a..a.com

14

http://duckduckgo.com/
http://duckduckgo.com/

5. Opciones a la URL
Respecto a la estructura básica anterior, es posible añadir una, varias, todas o
ninguna de las opciones explicadas a continuación (puerto, usuario, contraseña,
consulta y/o sección).

Especificar un puerto
Se puede especificar un puerto de la máquina a la que nos dirigimos, añadiendo
dos puntos y un número tras la máquina. Si no se especifica puerto, se usa el
puerto por defecto para el esquema indicado (80 para http, 443 para https, 23
para ftp, etc.):

https://en.wikipedia.org:80/wiki/Subdomain

Puedes encontrar los puerto asignados, tanto de forma oficial como de facto, para
cada esquema (también llamado protocolo) en
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers .

Ej. 5: Prueba a cambiar el puerto del ejemplo anterior a 8080: verás que
dicha URL no identifica ningún recurso existente y, por tanto, el navegador da
el error “No se puede conectar”, porque ni tan siquiera se habrá podido
establecer la conexión.

Ej. 6: Queremos acceder, usando el protocolo http seguro, al recurso situado
en /hola.html en un servidor llamado example.com, el cual está escuchando
en el puerto 8080 ¿cuál es la URL necesaria para ello?

Usuario y/o contraseña
Para aquellos recursos web que están bajo el control de un usuario de la máquina
destino, podemos especificar un usuario y, si es necesario, también una
contraseña de acceso para dicho usuario:
ftp://usuario:contraseña@mirrowindftp.es/profiles

15

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Consultas
Algo muy común en la web es especificar una consulta, que se añadirá tras la
ruta, empezando por una interrogación. Esta consulta podrá ser usada por el
servidor web para mostrar una información u otra, o realizar otras tareas. Un
ejemplo muy común está en los buscadores: https://www.google.com/search?
q=url .

Las búsquedas están siempre precedidas por una interrogación inicial, tras la cual
se indica un parámetro y su valor unidos con un igual. Cada parámetro nuevo
estará precedido de un ampersand:

?prm1=val1&prm2=val2&prm3=val3

Ej. 7: Prueba a cambiar la parte a la derecha del igual (cambia “url” por
otra cosa) y ponlo en la barra de direcciones del navegador: verás que los
resultados de la búsqueda difieren. Observa que la página es la misma: es una
página que recoge la parte de búsqueda de la dirección web y proporciona los
resultados relacionados con ese texto.

Ej. 8: Identifica los parámetros y los valores correspondientes de la
siguiente URL: https://www.google.com/search?
q=site:bbc.com+climate+change&lr=lang_es&safe=active&tbs=qdr:y

Ej. 9: Crea una URL para acceder, vía http puerto 80, al servidor
“youtube.com”, y el recurso a buscar es un fichero llamado “watch”. Se le ha
de pasar una consulta con el párametro “v” valiendo “NomVW1mm4BY y un
parámetro llamado “t” con el valor “550s” ¿Es posible no especificar el
puerto?
Nota: la URL resultante debe llevarte a un video de Baitybait.

Sección
Finalmente, se puede especificar una sección dentro del recurso web, de forma
que dirigimos al usuario a esa parte específica dentro del recurso web. Se añade
al final, empezando con una almohadilla (el carácter “#”):
https://en.wikipedia.org/wiki/URL#Notes

16

https://www.google.com/search?q=site:bbc.com+climate+change&lr=lang_es&safe=active&tbs=qdr:y
https://www.google.com/search?q=site:bbc.com+climate+change&lr=lang_es&safe=active&tbs=qdr:y
https://www.google.com/search?q=url
https://www.google.com/search?q=url

El uso de secciones es posible en todo tipo de ficheros, pero es especialmente
usado en archivos html.

Ej. 10: Pon la dirección anterior en la barra de direcciones del navegador.
Luego, cambia “Notes” por “See_also” o por “Syntax” y verás que la posición
del navegador cambia.
Cuando la sección indicada en la dirección no existe, entonces no producirá
ningún cambio (si se estaba ya en la web) o el navegador se situaría al inicio
de la página: cierra el navegador y, tras reabrirlo, pon
https://en.wikipedia.org/wiki/URL#Blah .

Sintaxis completa
La sintaxis completa para una URL sería la siguiente, siendo obligatorios solo el
esquema y la ruta. Además, si se especifica usuario, contraseña o puerto, también
debe especificarse la máquina, la cual se especifica en la inmensa mayoría de
URLs:

esquema://usuario:contraseña@máquina:puerto/ruta?
consulta#sección

Ej. 11: Crea una URL para acceder, vía ftp puerto 20, al servidor
“mylastserver.it” con un usuario “admin”, un password “abcdef”, y el recurso
a buscar es un fichero llamado “a.png” dentro del directorio “img”. Se le ha
de pasar una consulta con el parámetro “sec” valiendo “a54” y un parámetro
llamado “par” con el valor “32” ¿Es posible no especificar el puerto?
Nota: La URL resultante no es real.

Ej. 12: Construye una URL cuya máquina sea “dragonslite.es”, con esquema
https, y que apunte al archivo pass.php que está en el directorio “pass” que, a
su vez, está en el directorio “docencia”. Además, la URL tendrá:
 • Puerto: 443,
 • Búsqueda: parámetro alfa igual a abd , y beta igual a -20 .
 • Sección: exito
 • Usuario admin, contraseña: HOLA%2B%23.hola
 (la contraseña real es “HOLA+#.hola” pero debemos codificarla).

17

Nota: La página resultante tiene varios párrafos de texto y una sección
llamada “Éxito”.

18

6. DNS
Como hemos visto, para realizar una conexión de red con una máquina conectada
a Internet necesitamos la IP de dicha máquina. Sin embargo, en la web real, rara
vez se usan directamente IPs, sino nombres de dominio, como google.com o
amazon.es. El servicio DNS transforma estos nombres de dominio por su
correspondiente IP. El proceso para una consulta DNS es la siguiente:

Cliente .es →
← IP del TLD Raíz (conocidos por el SO)

¿m1.docs.expl.es? expl.es →
← IP del serv. autoritativo TLD [.es] (muy estables)

m1.docs.expl.es →
← IP de m1.docs.expl.es Servidor autoritativo de expl.es

• El cliente consulta a uno de los servidores raíz (estos servidores son muy
estables y sus direcciones son conocidas por el sistema operativo) para saber
qué servidores Top Level Domain (TLD) tienen información sobre el dominio de
mayor nivel del dominio a consultar (.com, .es, etc.).

• El cliente consulta a uno de esos servidores TLD para saber qué servidores
autoritativos poseen el dominio a buscar.

• Consulta a uno de esos servidores autoritativos para saber qué IP corresponde
al dominio consultado.

Un servidor autoritativo contiene zonas DNS. Una zona DNS contiene toda la
información sobre un dominio concreto. Observa

Servidor autoritativo en el propio dominio
En este caso, el servidor autoritativo será el propio dominio (en el ejmplo de
arriba, el servidor gris sería el propio expl.es).

Un ejemplo de los registros existentes de una zona DNS (la cual estará en un
servidor autoritativo), donde el servidor autoritativo coincide con el servidor que
sirve el dominio en cuestión es el siguiente:

19

dominio.com. IN SOA dominio.com. admin.dominio.com. (
 2025091501 ;serial: Nº serie de la zona de dominio
 7200 ;refresh: cada cuanto los sec. revisan si hay cambios
 3600 ;retry: lo que un sec. espera ante fallo para reintentar
 1209600 ;expire: con fallo, cuando la info de sec. expira
 3600) ;minimum TTL: tiempo resolutores guardan respuestas
 ;negativas

dominio.com. IN NS dominio.com. ;serv. primario definido en SOA
 ;En este caso, dominio.com coincide
;Si los servidores de nombres estuvieran en subdominios (ej ns1.dominio.com
; y ns2.dominio.com, entonces deberían definirse las IPs de esos subdominios
; con registro A/AAAA.

dominio.com. IN A 203.0.113.25 ;IPv4 del dominio
ejemplo.com. IN AAAA 2001:db8::8a2e:370:7334; IPv6 del dominio
www IN CNAME dominio.com. ;alias
sub IN A 198.51.100.25 ;subdominio gestionado en la misma
 ; zona, pero en otro servidor.

mail IN A 203.0.113.26 ;IPv4 del subdominio mail
ejemplo.com. IN AAAA 2001:db8::8a2e:370:7629; IPv6 del subdominio mail
dominio.com. IN MX 10 mail.dominio.com. ;Definición del mail (MX)

dominio.com. IN TXT "v=spf1 include:_spf.hostinger.com ~all"
 ;Validación SPF del correo

La zona DNS tiene que tener, como mínimo:

• Un registro SOA
• Un registro A para IPv4 o uno AAA para IPv6 (o ambos) para el dominio que se

quiere definir.

• Un registro NS que especifica el servidor autoritativo para el dominio.

Otros campos son posibles, como registros A/AAA para subdominios, alias
(CNAME), mail (MX) o campos de texto (TXT). Los campos de texto se emplean,
entre otras cosas, para implementar opciones seguras del servidor de correo (SPF)
o publicar la clave pública del dominio.

Ej. 13: Escribe los registros de una zona DNS en donde el servidor vdc.es es
el servidor autoritativo de vdc. Además:

20

 - El SOA tendrá valores similares, pero un serial de 7320597714 y que un
 servidor secundario esperará 2400 segundos antes de reintentar un fallo.
 - Existirá un alias para que daw.vdc.es apunte al mismo dominio vdc.es.
 - La IPv6 será 2001:db8:85a3::8a2e:370:7334, y la IPv4 será 103.3.3.144.

Delegación a un servidor de nombres
Sin embargo, es muy frecuente delegar en un servidor de nombres. En ese caso,
el servidor autoritativo es ese servidor de nombres, que suele proporcionar, como
mínimo, un servidor secundario.

Cliente .es →
← IP del TLD Raíz (conocidos por el SO)

¿m1.docs.expl.es? expl.es →
← IP del serv. autoritativo TLD [.es] (muy estables)

m1.docs.expl.es →
← IP de m1.docs.expl.es

ns1.serv-ns.com
(servidor autoritativo de .expl.es)

En ese caso cambian los siguientes registros:

dominio.com. IN SOA ns1.serv-ns.com. admin.midominio.com. (...

dominio.com. IN NS ns1.serv-ns.com. ;serv. primario definido en SOA
dominio.com. IN NS ns2.serv-ns.com. ;servidor secundario

Estos registros habrá que modificarlos en el servidor de nombres (en nuestro
ejemplo: ns1.serv-ns.com), ya que ahora nuestro servidor no servirá peticiones
DNS.

Ej. 14: Escribe los registros de una zona DNS en donde el servidor de
nombres mi-ns1.com es el servidor autoritativo de vdc.es. También existirán:
- Un mail cuya IPv4 será 103.3.3.145 (sin IPV6).
- un servidor DNS secundario: mi-ns2.com
- El resto de datos serán similares al ejercicio anterior.

21

Delegación de subdominios
En este caso, tenemos un subdominio que está gestionado en otro servidor. En
ese caso, en el servidor autoritativo tendremos, en vez de alias (CNAME), el
nombre del subdominio con registros NS que apuntarán al servidor autoritativo
que gestiona ese subdominio.

Cliente .es →
← IP del TLD Raíz (conocidos por el SO)

¿m1.docs.expl.es? expl.es →
← IP del serv. autoritativo TLD [.es] (muy estables)

sub.expl.es →
← IP de serv autoritavo
 de sub.expl.es

Servidor autoritativo de expl.es

sub.expl.es →
← IP de sub.expl.es

Servidor autoritativo de
sub.expl.es

En este caso, pondremos que los servidores de nombres del subdominio están
gestionados por el propio subdominio:

sub IN NS ns1.sub.ejemplo.com.
sub IN NS ns2.sub.ejemplo.com.
;También estarían los SOA y demás registros del dominio principal.

En el servidor del subdominio tendremos otro SOA, de forma similar a dominio
más:

$ORIGIN ejemplo.com. ;directiva privada: establece dominio raíz de la zona.

sub.ejemplo.com. IN SOA ns1.sub.ejemplo.com. admin.ejemplo.com. (
 2025101701 3600 1800 604800 86400)

sub.ejemplo.com. IN NS ns1.sub.ejemplo.com.
sub.ejemplo.com. IN NS ns2.sub.ejemplo.com.

sub.ejemplo.com. IN A 203.0.113.50
sub.ejemplo.com. IN AAAA 2001:db8::50
ns1.sub IN A 203.0.113.10 ;Los servidores de nombres se
ns1.sub IN AAAA 2001:db8::10 ; gestionan en otros servidores
ns2.sub IN A 203.0.113.11 ; físicos; hay que iondicar IPs
ns2.sub IN AAAA 2001:db8::11

22

Ej. 15: Escribe los registros de una zona DNS de el subdomino delegado de
daw.vdc.es que posee:
- Un único servidor DNS gestionado en el mismo servidor físico que el
 subdominio daw.vdc.es.
- Un SOA con datos similares al ejemplo anterior.
- La IP de daw.vdc.es es 183.200.1.5 (sin IPv6).

Resolutores de nombres
El proceso de resolver un DNS es costoso, por lo que los resolutores de nombres
tienen cachés que almacenan, temporalmente, los pares dominio-IP. Además, los
resolutores se establecen de forma jerárquica, para mejorar el rendimiento.

23

7. Obtener un recurso web
Toca ahora dirigirnos al servidor web, esto se hará realizando una conexión de
red al servidor web, usando la IP obtenida del proceso DNS y el puerto indicado
en la URL. Si la URL es válida, y el servidor esta escuchando en el puerto
empleado, se establecerá la conexión de red.

https://expl.com/rta/sub/fich?busq=b#section

Ordenador

 ¿example.com? → →
Servidor DNSUDP

53 93.184.216.34 ← ←

expl.com
93.184.216.34

Hello HTTPS + generar clave sesión TCP
443 expl.com/rta/sub/fich?busq=b → →

 contenedor de “fich” ← ←

HTTPS
Abierta la conexión web, lo primero será utilizar el protocolo HTTPS para
implementar la seguridad y privacidad de la comunicación, con los siguientes
pasos:

• ClientHello: El cliente envía al servidor las opciones de encriptación de las que
dispone.

• ServerHello: El servidor escoge una y le envía su certificado digital Su
certificado digital X.509, que incluye su clave pública y que estará firmado por
una CA (Autoridad de Certificación).

• El cliente comprueba que el certificado es válido. El navegador tendrá una lista
de entidades certificadores con sus correspondientes claves públicas, para poder
comprobar la autenticidad del servidor web.

• El servidor y el cliente acuerdan una clave de sesión, con RSA o ECDHE. A
partir de ahora, ambos pueden comunicarse de forma encriptada, ya que el
resto de la comunicación se cifra con esa clave de sesión.

24

https://example.com/ruta/subruta/fich?busq=b#sec

Ej. 16: ¿Qué pasará si cliente y servidor no tienen ninguna opción de
encriptación en común?
Nota: es muy raro hoy día salvo cuando se intente conectar con un servidor
obsoleto que solo soporte SSLv3, TLS 1.0 o suites débiles como RC4, y el
navegador sea moderno, que soporta TLS 1.2/1.3.

Ej. 17: Busca, en tu navegador, el listado de entidades certificadoras
necesarias para poder comprobar que el servidor es lícito.

Ej. 18: Si el navegador, al comprobar el certificado del servidor, detectara
que está caducado o no si está firmado por una entidad certificadora que el
navegador no tiene en su listado, o si el certificado no es válido ¿qué debería
suceder?

HTTP
Ahora el cliente, empleando el protocolo HTTP, empleará la URL para indicarle al
servidor qué fichero desea recibir. Entonces, dicho servidor recibirá la petición y
devolverá el fichero solicitado. Es posible que, para generar, calcular o
seleccionar el fichero a devolver, tenga en cuanta los parámetros de búsqueda
especificados en la URL recibida, o que se realicen ciertas operaciones gracias a
lenguajes como PHP.

Finalmente el ordenador recibirá el fichero y hará lo que corresponda, por
ejemplo, si el programa que realiza el proceso es un navegador en busca de un
archivo HTML, mostrará la web en pantalla. La mayoría de navegadores evaluará
el contenido de dicha página web y, usando la misma conexión o abriendo otras
si es necesario, solicitan otros recursos referenciados por la página web. Estas
peticiones a otros recursos emplearán la misma conexión de red si es posible, que
será cuando conecten al mismo dominio que la página web original.

Ej. 19: En el proceso anterior, si especificamos el puerto en la URL, ¿qué
debe cambiar en el esquema para que todo funcione?

Ej. 20: Cuando el navegador pide y recibe un archivo HTML, necesitará
bajar otros archivos del mismo servidor (imágenes, CSS, JS, etc.) ¿deberá

25

realizar una conexión de red nueva para cada uno de ellos? ¿y si una
ejecución de JS de la página realiza un fetch?

Ej. 21: ¿Que pasará si la URL es errónea?

Una prueba con netcat
En una terminal ejecuta el siguiente comando de netcat para realizar una
conexión a www.google.com en el puerto 80:

nc www.google.com 80

A continuación, introduce lo siguiente (tendrás que usar el retorno de carro entre
una línea y otra, y dos retornos de carro tras la segunda línea). Verás que te
devuelve la página web base de Google:

GET /search HTTP/1.0

Host: www.google.com

La primera línea especifica un comando GET, es decir, le pide al servidor que le
envíe un fichero, es decir le especificamos la ruta. El fichero solicitado es el que
se especifica justo después, en este caso se solicita el fichero en la ruta “/search”
(como es un directorio, el servidor devolverá un fichero concreto dentro de ese
directorio). La segunda línea especifica el host que, en los casos que nosotros
realizaremos, coincidirá con el servidor al que hemos realizado la conexión (el
que hay tras el comando “nc”).

La resuesta de Google será un código 302, indicando que el fichero que estaba en
esa dirección ha sido movido.

Ej. 22: Realiza una petición a la nueva dirección indicada por el mensaje
302, que será la página de inicio de Google (te saldrán un código HTML
bastante largo.
Nota: Puedes comprobar que la web recién obtenida es la correcta cargando la
misma dirección en un navegador, dirigiéndote al menú “Herramientas →
Herramientas del desarrollador → Código fuente de la página” en Firefox, o
una ruta similar en otros navegadores.

26

Para HTTPS, puedes usar el siguiente comando, pero deberás instalar el paquete
“ncap” (puedes hacerlo a través de apt):

echo -en "GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n" | ncat --ssl
google.com 443

Ej. 23: Obtén el archivo “prueba.html” dentro del directorio “docencia”,
usando “HTTP/1.1” en el host “dragonslite.es”. Debes pasarle un parámetro
llamado “asignatura” con el valor “web” y otro parámetro llamado turno con
el valor “tarde”.

27

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 2: 2:

HTML 5HTML 5

1. Lenguaje de marcas
HTML5 (Hyper Text Markup Language, versión 5) es un lenguaje de marcas. Con
HTML5, se puede describir tanto el contenido como la estructura de cualquier
web, usando dichas marcas, también llamadas etiquetas.

Estructura de un nodo
En HTML 5, un elemento o nodo está compuesto de una etiqueta de apertura, un
contenido y una etiqueta cierre:

<div>
 Contenido del div
</div>

La etiqueta de apertura puede tener parámetros. Cada parámetro podrá tener
asociado un valor, añadiendo, a la derecha del parámetro, un igual y el valor del
parámetro entre comillas (aunque HTML 5 permitiría no usar las comillas, éstas
son obligatorias para seguir la guía de estilo).

<div class="mi-clase" id="mi-id" hidden>
 Contenido del div
</div>

Cuando una etiqueta no posee nada en su interior, puede usarse la forma
autoconclusiva, que consiste en eliminar la etiqueta de cierre, pero añadiendo
una / al final de la de apertura (esta barra al final puede omitirse en HTML 5,
pero no si se quiere ser compatible con XHTML:

Las etiquetas autoconclusivas de HTML 5 son: area, base, br, col, embed, hr, img,
input, link, meta, param, source, track y wbr.

Anidar nodos
Para construir la estructura del documento HTML, vamos añadiendo nodos uno
detrás de otro. Sin embargo, un nodo puede contener a otro:

29

<div class="mi-clase" id="mi-id" hidden>
 <p>Esto es un div</p>
</div>

Lo siguiente sería incorrecto, pues se anidan las etiquetas de forma incorrecta.

<i>Texto</i> <!--Mal: etiquetas cruzadas-->

30

2. Guía de estilo
Según la guía de estilo de HTML 1 , deben escribirse en minúsculas las etiquetas,
los atributos y los nombres de fichero. También deben usarse las comillas en los
atributos, sin espacios alrededor del símbolo de igual. Aunque HTML permite no
cerras ciertas etiquetas (<p>, <body>, <head>, etc.), éstas deberían cerrarse.

Cada una de las siguientes líneas representa un ejemplo independiente que,
aunque el lenguaje HTML lo permite, no debe escribirse para obtener un buen
estilo:

 <!--Sobran espacios-->
 <!--Faltan comillas en atributo-->
 <!--Atributo debe ir en minúscula-->
 <!--Etiqueta debe ir en minúscula-->
 <!--Atributo debe ir en minúscula-->
<div><p>Texto</div> <!--Etiqueta <p> debe tener cierre-->

La guía de estilo también establece el uso de ciertas etiqueta <meta>, así como
el especificar siempre el título y el lenguaje de la página. Todas esas
recomendaciones se incluyen en la estructura básica de un documento HTML que
se propone más adelante.

Identado y espaciado
Cuando los parámetros de una etiqueta son demasiado largos, se parten en varias
líneas:

<a href="https://www.ejemplo.com"
 title="Enlace a Ejemplo"
 target="_blank">Enlace a Ejemplo

En general, se establece que un nuevo elemento se establece en una nueva línea:

<div>
 <p>
 Este es un párrafo relativamente largo dentro de un div.
 </p>
</div>

1 https://www.w3schools.com/html/html5_syntax.asp

31

https://www.w3schools.com/html/html5_syntax.asp

Los elementos que son cortos pueden establecerse en una sola línea

<p> Párrafo muy corto.</p>

Respectos a las separaciones entre líneas, se añaden para separar secciones.

 <header>
 <h1>Bienvenidos a mi página</h1>
 </header>

 <main>
 <section>
 <h2>Sección principal</h2>
 <p>Ejemplo de contenido en un párrafo.</p>
 </section>

 <section>
 <h2>Otra sección</h2>
 <p>Texto adicional en la página.</p>
 </section>
 </main>

 <footer>
 <p>Derechos reservados 2024</p>
 </footer>

32

3. Estructura básica
El siguiente código es la base para una página HTML 5 básica, a partir de la cual
podremos añadir el contenido necesario.

<!DOCTYPE html>
<html lang="es">
 <head>
 <title>Título de la página web</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1.0">
 </head>
 <body>
 <!-- Contenido de la página web -->
 </body>
</html>

<!DOCTYPE html> le dice al navegador que el presente documento es una web
escrita con HTML5.

<html> debe poseer el atributo lang , cuyo valor especifica el idioma del
documento, en nuestro caso es , relativo al idioma español.

En <head> se definen los metadatos del documento, como son el título
(obligatorio en todo documento HTML5), palabras clave, estilos, etcétera. Los
metadatos no se muestran.

En <body> estará todo el contenido del documento: textos, imágenes, enlaces,
etcétera, estructurados debidamente con etiquetas.

Es posible validar una página en https://validator.w3.org/ .

33

https://validator.w3.org/

4. Elementos básicos
En HTML 5 existen distintas categorías de elementos:

Phrasing: a, abbr, area (como descendiente de map), b, bdi, bdo, br, button, cite,
code, data, datalist, del, dfn, em, i, input, ins, kbd,label, link (en los casos
permitidos dentro de body), map, mark, meta (con el atributo itemprop), meter,
noscript, output, progress, q, ruby, s, samp, script, select, slot, small, span, strong,
sub, sup, template, textarea, time, u, var, wbr. Además, pertenecen a esta
categoría los elementos personalizados y el texto plano.

Phrasing y embedded: audio, canvas, embed, iframe, img, math, object,
picture, svg y video.

Heading: h1, h2, h3, h4, h5, h6 y hgroup.

Sectioning: article, aside, nav y section.

Solo flow: address, block, quote, details, dialog, div, dl, field, set, figure, footer,
form, header, hr, p, pre, ol, search, table.

Metadata: base, link, meta, noscript (también pertenece a la categoría phrasing),
script, style, template y title.

Solo Interactive: select.

34

https://html.spec.whatwg.org/multipage/dom.html#kinds-of-content

35

5. Elementos phrasing
Los elementos de la categoría phrasing se asemejan a los elementos inline de
HTML 4, en cuanto a su comportamiento por defecto es renderizarse uno tras
otro, coincidiendo en su línea base, hasta el final del ínea. Si un elemento es más
alto que el resto en la misma línea, los elementos más pequeños dejan un espacio
para que en esa línea quepan todos los elementos en altura:

A continuación se comentan los elementos phrasing de HTML 5 y su uso.
También entrarían en esta categoría la etiqueta link en ciertos casos concretos y
la etiqueta meta cuando tiene la propiedad itemprop.

Elementos semánticos puros
Estos elementos le proporcionan un significado semántico a la parte de texto que
rodean.

Cita <cite>. Indica el título de una obra, como un libro, película, o artículo.

<cite>Orgullo y prejuicio</cite> es una novela de Jane Austen.

Código <code>. Representa un fragmento de código fuente.

<code>console.log("Hola, mundo!");</code>

Texto eliminado . Indica que el texto ha sido eliminado de un documento.
Por defecto, se representa como texto tachado.

<p>Este es un texto eliminado.</p>

Definición <dfn>. Define un término que se está introduciendo.

<dfn>HTML</dfn> es el lenguaje de marcado de hipertexto.

36

Énfasis . Indica énfasis en el texto, generalmente renderizado en cursiva.

Este texto es enfatizado.

Insertado <ins>. Indica que el texto ha sido insertado en un documento. Puede
utilizarse para indicar correcciones en un texto o para indicar contenido nuevo en
una página web. Ejemplo:

<p>Este es un texto <ins>agregado</ins>.</p>

Teclado <kbd>. Representa un texto, comando o combinaciones de teclas que
habrán ser introducidas en un teclado por el usuario para realizar la tarea que se
esté describiendo.

Texto importante <mark>. Resalta texto que es relevante para el contenido.

<p>Este es un <mark>texto destacado</mark> en el párrafo.</p>
<p>Presiona <kbd>Ctrl</kbd> + <kbd>C</kbd> para copiar.</p>

Resultado <output>. Representa el resultado de un cálculo o una acción del
usuario.

<input id="num1" type="number" value="0"
 oninput="document.getElementById('res').value = this.value">
<output id="res">0</output>

Cita <q>. Representa una cita corta en línea.

<p>Ella dijo: <q>Esto es un ejemplo de cita.</q></p>

No relevante <s>. Representa texto que ya no es relevante o preciso (tachado).

<p>Este texto está <s>eliminado</s>.</p>

Salida <samp>. Representa el resultado de un programa o una salida de
muestra.

<p>El resultado es: <samp>42</samp>.</p>

Texto pequeño <small>. Representa texto menos importante o más accesorio,
puede que aclaratorio, un aviso legal o similar. Por defecto, aparece más pequeño
que el texto circundante.

<p>Texto normal <small>Texto más pequeño</small>.</p>

37

Gran énfasis . Indica un énfasis fuerte, generalmente renderizado en
negrita.

Texto enfatizado

Subíndice <sub>. Representa texto en subíndice.

H₂O

Superíndice <sup>. Representa texto en superíndice.

E = mc²

Ej. 24: Crea un archivo HTML 5 que tenga el siguiente texto:

El uso de IA permite la técnica del Upscaling, de forma que el juego genere sus
frames a una resolución y la tarjeta gráfica reescale cada uno de esos frames a
una resolución mayor. Esta resolución puede ser hasta el triple en cada una
de las dimensiones. Por ejemplo:
[640px x 360px]x3 → 1920px x 1080px
También es posible el Frame Generation, que permite inventarse varios frames
un frame a partir del frame anterior generado por el juego, aumentando los
FPS.
En palabras de Tom’s Hardware: “DLSS [] adds visual details that may surpass
native rendering”.
La recientes recnologías de Upscaling y Frame generation son DLSSTM de
Nvidia, FSRTM de AMD y XeSSTM de Intel. Estas tecnologías son marcas
registradas de sus respectivas compañías.
Importante: estas técnicas han de ser soportadas por el juego, y suponen
una mejora muy importante en el rendimiento.
Para ver las tarjetas gráficas de tu sistema, puedes introducir en una terminal:
glxinfo | grep "OpenGL. Saldrá un texto del estilo:
OpenGL vendor string: AMD
OpenGL renderer string: AMD Radeon Graphics (radeonsi, renoir, LLVM
17.0.6, DRM 3.57, 6.8.0-45-generic)

38

 • El texto entre comillas del cuarto párrafo es una cita.
 • “Upscaling” y Frame Generation son definiciones.
 • “ Varios frames” es texto erróneo a eliminar.
 • “inventarse” es una palabra con énfasis.
 • El párrafo “Las recientes ...” ha sido añadido recientemente.
 • El párrafo “Importante … “ es importante que ha de ser resaltado.
 • “Estas tecnologías...” hasta el final de párrafo, es texto aclaratorio.
 • “1920px x 1080px” es un resultado
 • “glxinfo | grep "OpenGL” es un comando de teclado.
 • El último párrafo es la salida de un comando.
 • Los índices y superíndies deben ser etiquetados con html.
 • “Esta res … dimensiones” es texto superfluo a eliminar.

Elementos de valor
Abreviatura: <abbr>. Representa una abreviatura o acrónimo.

<abbr title="Hypertext Markup Language">HTML</abbr>

Valor con formato <data>. Asociado a un valor con un formato específico, útil
para máquinas.

<data value="2023-09-22">22 de septiembre de 2023</data>

Medida <meter>. Representa una medida dentro de un rango conocido, como
una escala de progreso.

<meter value="0.6">60%</meter>
<bdi>Texto en otro idioma</bdi>

Progreso <progress>. Indica el progreso de una tarea en curso.

<progress value="70" max="100">70%</progress>

Hora/fecha <time>. Representa una fecha, hora o intervalo de tiempo. Ejemplo:

<time datetime="2023-09-22">22 de septiembre de 2023</time>

Variable <var>. Representa una variable en una expresión matemática o lógica.

<p>La ecuación es: <var>x</var> + 2 = 10</p>

39

Componentes
Área <area> (solo como descendiente de map). Define una zona activa dentro de
un mapa de imagen.

<map name="miMapa">
 <area shape="rect" coords="34,44,270,350" href="pagina.html" alt="Página
de ejemplo">
</map>

Botón <button>. Define un botón que puede ser presionado para realizar una
acción.

<button type="button">Haz clic aquí</button>

Lista de opciones <datalist>. Proporciona una lista de opciones predefinidas
para un campo de entrada.

<input list="frutas">
<datalist id="frutas">
 <option value="Manzana">
 <option value="Banana">
 <option value="Naranja">
</datalist>

Campo de entrada <input>. Define un campo de entrada interactivo.

<input type="text" placeholder="Escribe tu nombre">

Etiqueta <label>. Define una etiqueta para un elemento de entrada.

<label for="nombre">Nombre:</label>
<input type="text" id="nombre">

Mapa de imagen <map>. Define un mapa de imagen que asocia áreas activas a
enlaces.

<map name="miMapa">
<area shape="rect" coords="34,44,270,350" href="pagina.html" alt="Página de
ejemplo">
</map>

Menú desplegable <select>. Crea un menú desplegable para seleccionar una
opción.

40

<select>
 <option value="opcion1">Opción 1</option>
 <option value="opcion2">Opción 2</option>
</select>

Área de texto <textarea>. Define un área de texto multilínea para la entrada
del usuario. Ejemplo:

<textarea rows="4" cols="50">Texto aquí...</textarea>

Componente personalizado <slot>. Se utiliza en Web Components para definir
un lugar donde se puede insertar contenido.

<!DOCTYPE html>
<html lang="es">
<head>
 <meta charset="UTF-8">
 <title>Ejemplo de Slot</title>
 <script>
 class MyComponent extends HTMLElement {
 constructor() {
 super();
 const shadow = this.attachShadow({ mode: 'open' });
 shadow.innerHTML = `
 <style>
 div {
 border: 1px solid #ccc;
 padding: 10px;
 margin: 10px 0;
 }
 </style>
 <div>
 <h2>Mi Componente</h2>
 <slot></slot>
 </div>
 `;
 }
 }

 customElements.define('my-component', MyComponent);
 </script>
</head>
<body>
 <my-component>
 <p>Este contenido se inserta en el slot del componente.</p>

41

 </my-component>
</body>
</html>

Plantilla <template>. Define contenido que no se renderiza en la página, pero
puede ser instanciado con JavaScript.

<!DOCTYPE html>
<html lang="es">
<head>
 <meta charset="UTF-8">
 <title>Ejemplo de Template</title>
</head>
<body>
 <template id="myTemplate">
 <div class="item">
 <h3>Título del Item</h3>
 <p>Descripción del item aquí.</p>
 </div>
 </template>

 <div id="container"></div>

 <button id="addItem">Agregar Item</button>

 <script>
 const button = document.getElementById('addItem');
 const container = document.getElementById('container');
 const template = document.getElementById('myTemplate');

 button.addEventListener('click', () => {
 const clone = document.importNode(template.content, true);
 container.appendChild(clone);
 });
 </script>
</body>
</html>

Idiomas
Aislado bidireccional <bdi>. Aísla una parte del texto que puede estar en un
idioma diferente, evitando que afecte a la dirección del texto circundante.

42

Sobreescritura bidireccional <bdo>. Controla la dirección del texto (izquierda
a derecha o derecha a izquierda).

<bdo dir="rtl">Texto en dirección de derecha a izquierda</bdo>

Anotación <ruby>. Se utiliza para realizar pequeñas anociones que son
renderizadas arriba, abajo o cerca del texto base, usualmente usado para la
pronuciación de caracteres del este asiático.

<ruby>

 漢 <rt>かん</rt>

</ruby>

Salto de línea
Salto de línea
. Inserta un salto de línea en el texto.

<p>Primera línea
Segunda línea</p>

Ruptura de palabra <wbr>. Sugiere un posible punto de ruptura de línea.

<p>
 https://this<wbr />.is<wbr />.a<wbr />.really<wbr />
 .long<wbr />.example<wbr />.com/With<wbr />/deeper<wbr />
 /level<wbr />/pages<wbr />/deeper<wbr />/level<wbr />
 /pages<wbr />/deeper<wbr />/level<wbr />/pages
</p>

Comportamientos adicionales
Enlace: <a>. Define un hipervínculo que permite navegar a otra página o
recurso.

Visitar Ejemplo

Texto alternativo a script <noscript>. Proporciona contenido alternativo si el
script está deshabilitado o no soportado.

<noscript>JavaScript no está habilitado en tu navegador.</noscript>

Script <script>. Define un script de programación, como JavaScript.
43

<script>
 console.log("Hola, mundo!");
</script>

Contenedor de texto . Un contenedor en línea para aplicar estilos o
scripts.

Texto en rojo

Elementos de formato
Los siguientes elementos solo aplican formato, sin implicar ningún énfasis ni
significado semántico. Por lo general, es preferible usar CSS en vez de estos
elementos para aplicar formato:

Negrita . Hace que el texto se muestre en negrita, sin implicar énfasis.

Texto en negrita

Itálica <i>. Representa un texto en cursiva, sin énfasis adicional.

<i>Texto en cursiva</i>

Subrayado <u>. Subraya el texto, sin implicar énfasis adicional.

<u>Texto subrayado</u>

44

PPARTEARTE II: II:

ProgramaciónProgramación
básicabásica

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 1: 1:

Instalación delInstalación del
entornoentorno

1. Instalación en Linux
En una distribución de Linux, el software se divide en paquetes. Cada paquete
aporta una aplicación, una librería, plugin u otro tipo de software. Para instalar
un paquete en Ubuntu, podemos usar apt-get:

sudo apt-get install «paquete» #Instala el paquete indicado con todas sus
 # dependencias

Los paquetes pueden tener dependencias, es
decir, que necesitan que otros paquetes estén
instalados para poder funcionar. En el caso de la
derecha, tenemos dos aplicaciones, vim y vim-
tiny , que ambas requieren varias librerías para

funcionar. A su vez, el paquete vim-julia ,
necesita vim para funcionar. Aunque existen
otros muchos, en Ubuntu, tenemos los siguientes
comandos para ver información sobre los paquetes
y sus dependencias:

sudo apt-cache search «texto» #Busca paquetes que contenga, en su nombre,
 # descripción, etc. a «texto»
apt-cache show «paquete» #Da información del paquete, incluidas
dependencias
apt-rdepends -r «paquete» #Indica los paquetes que dependen de «paquete»

Cada paquete tiene tiene una versión. Cuando se arregla algún fallo o se añaden
funcionalidades a algunos componentes de un paquete, lo que ocurre es que se
publica ese paquete con una versión superior. Es muy normal que un paquete
necesite que la versión de su dependencia sea de una versión concreta o superior.

Cuando se lanza una distribución (por ejemplo Ubuntu 23.010) ésta se “congela”,
de forma que todos los paquetes funcionen bien entre sí, cada paquete en sus
respectivas versiones.

Con este sistema, solo es posible consultar, instalar y desinstalar los paquetes que
están en los repositorios del sistema, tanto los que trae por defecto el sistema
operativo como los que se añadan por parte del administrador (en Ubuntu, a
través del sistema de PPA) que veremos más adelante.

49

vim-julia

vim vim-tiny

L i b s vim-common

Sistema operativo

Fig. 1: Paquetes y
dependencias

Ej. 25: Consulta los paquetes que dependen de neovim , y los paquetes de
los que neovim depende.

Ej. 26: Busca, con apt-cache , el paquete steam . Di la descripción corta
del paquete.

Centro de aplicaciones
La forma más fácil de instalar un paquete, en nuestro caso el de la aplicación
VSCode, es abrir la aplicación gráfica de Centro de Aplicaciones y, una vez allí,
buscar vscode . Aparecerá la aplicación y un botón para instalar el IDE.

El problema de esta solución es que no podemos controlar cómo se instala la
aplicación. En este caso, para VSCode, lo que realmente está haciendo es
instalarla como una aplicación snap .

Repositorio de terceros
En caso de programas no soportados por el sistema operativo, como es el caso de
VSCode, podemos añadir un repositorio de terceros: en Ubuntu tenemos los
Personal Package Archive, abreviado como PPA .

En ciertos casos, como con VSCode, debemos primero añadir las claves públicas
del proveedor de la aplicación, que normalmente estarán disponibles en su página
web. El siguiente comando descarga, usando curl , un fichero con las claves de
los productos de Microsoft desde su página web. Luego, usando gpg --dearmor ,
lo convierte a formato texto, guardando el resultado en microsoft.gpg:

sudo apt install curl
curl https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor >
microsoft.gpg

Una vez tenemos las claves públicas, copiamos el fichero microsoft.gpg al
directorio /etc/apt/trusted.gpg.d/ , de forma que el fichero pertenezca a root,
su grupo sea root y tenga permisos 644 (lectura para todos, escritura solo para
root). Hay muchas formas de hacer esto, una de ellas es:

sudo install -o root -g root -m 644 microsoft.gpg /etc/apt/trusted.gpg.d/

50

Todo lo anterior, insistemos, es solo necesario para ciertos paquetes. Lo que si es
necesario siempre es añadir el repositorio al sistema, usando el comando add-
apt-repository :

sudo add-apt-repository "deb [arch=amd64]
https://packages.microsoft.com/repos/vscode stable main"

Con esto, Ubuntu refrescará la base de datos de paquetes disponibles, y el paquete
en cuestión ya estará disponible, y podremos realizar una instalación típica, como
en el apartado anterior:

sudo apt-get install code

Podemos ver los repositorios activos de múltiples formas. Una de ellas es con la
aplicación gráfica Actualización de Software, pulsando el botón de Configuración,
donde veremos varias pestañas, siendo las dos primeras sobre los repositorios
instalados y activos:

Ej. 27: Busca otra forma (seguramente con varios comandos), para mover el
fichero microsoft.gpg al directorio de claves, estableciendo el mismo
propietario, grupo y permisos que en el comando de más arriba.

Ej. 28: Busca e instala la aplicación mkusb usando un repositorio PPA.

51

Fig. 2: Actualización de Software, repositorios no oficiales

Snap
Desarrollado por Canonical, Snap es un sistema en el que el paquete en cuestión
se instala en un entrono aislado 2 . En dicho entorno, la aplicación instala las
librerías que necesite, independientemente de que dichas librerías estén o no
instaladas en el sistema base. Esto tiene varias ventajas, pero la principal es que
las librerías instaladas en el entorno pueden ser distintas versiones que las
instaladas en el sistema, y permite a los desarrolladores publicar un software para
múltiples distribuciones Linux. También es posible impedir que el paquete (en
definitiva, las aplicaciones que contiene) modifiquen el sistema base. Por otro
lado, se desperdicia espacio y rendimiento. Puedes conocer un poco más sobre
esto en https://www.youtube.com/watch?v=F6qbDQo4nrM .

Snap es bastante sencillo de instalar, destacando la opción --classic : si
incluimos dicha opción, el paquete tendrá acceso al sistema base, en caso
contrario no lo tendrá. En caso de VScode, podemos emplear los siguientes
comandos para instalarlo y desinstalarlo:

sudo snap install --classic code #Instala VSCode con acceso al sistema
base
sudo snap --remove code #Desinstala VSCode

Ej. 29: Cuando instalamos VSCode con snap, éste tiene acceso a los
directorios y ficheros de este sistema ¿por qué es así?

Ej. 30: instala otro programa con snap (telegram, steam, gimp, etc.), pero
sin acceso a ficheros del sistema.

Paquetes Deb
Los paquetes deb son ficheros que podemos descargar, y conforman una extensión
del sistema de paquetes y dependencias del sistema operativo. En el paquete deb
está la aplicación en cuestión que queremos instalar, e información sobre las
librerías necesarias para su funcionamiento.

Para VSCode nos descargamos el fichero deb desde
https://code.visualstudio.com/, y obtendremos un fichero con extensión .deb .

2 Existen alternativas a Snap, como Flatpak, AppImage y otros.

52

https://code.visualstudio.com/
https://www.youtube.com/watch?v=F6qbDQo4nrM

Podemos Instalar la aplicación de forma gráfica usando Gdebi, o con el comando
dpkg:

sudo dpkg -i «fichero» #Instala el paquete contenido en el fichero .deb
sudo dpkg -r «paquete» #borra el paquete en cuestión, en cuestro caso:
code

Observa que, al desinstalar, debemos especificar el nombre del paquete, no del
fichero que nos descargamos en primer lugar.

Los paquetes deb, bien actualizados, permiten instalar aplicaciones de forma muy
cómoda para el usuario. Sin embargo, tienen una serie de desventajas, como la
mayor dificultad de creación y mantenimiento comparados con los paquetes Snap:
un paquete deb es específico para una distribución y, posiblemente, versión.

Puedes ver una rápida comparativa en https://www.youtube.com/watch?
v=dIdamacw_CE

Ej. 31: Los paquetes deb pueden ocupar desde algunos Kbytes a Mbytes, ¿a
qué se debe esto?

Código fuente
También puedes instalar aplicaciones a partir del código fuente. Esta solución es
la más compleja, pero es la que el resultado se ajustará a las librerías de nuestro
sistema, creando un ejecutable específico para nuestro sistema.

Lo primero que hay que hacer es instalar las herramientas necesarias para
compilar programas, y las librerías de compilación que el programa emplea,
aparte de los paquetes para el funcionamiento de la aplicación. Para compilar
VSCode en un entorno Debian reciente, las librerías necesarias son:

sudo apt-get install build-essential g++ libx11-dev libxkbfile-dev
libsecret-1-dev python3 npm

Los paquetes build-essential y g++ son herramientas de compilación, los
paquetes terminación -dev son paquetes con cabeceras de compilación. El
paquete python3 es un lenguaje de script usado por VSCode y, en cuanto a npm ,
lo usamos para obtener yarn , que lo usaremos para crear el ejecutable de
VSCode.

53

https://www.youtube.com/watch?v=dIdamacw_CE
https://www.youtube.com/watch?v=dIdamacw_CE

El siguiente comando de git bajará el código de VSCode en una carpeta. Lo
siguiente será entrar en la carpeta e instalar la última herramienta de
compilación:

git clone https://github.com/microsoft/vscode.git
cd vscode
npm config set legacy-peer-deps true
npm install yarn
npm install ternary-stream gulp-merge-json esbuild jsonc-parser parse-
semver

Finalmente, con yarn , creamos el ejecutable. Recuerda que estamos ya dentro
de la carpeta vscode:

./node_modules/yarn/bin/yarn

./node_modules/yarn/bin/yarn run gulp vscode-linux-x64

./node_modules/yarn/bin/yarn run gulp vscode-linux-x64-build-deb

Podemos configurar el sistema para evitar la telemetría:

mkdir -p ~/.config/Code\ -\ OSS/User
echo -e "{\n \"telemetry.enableCrashReporter\": false,\n
\"telemetry.enableTelemetry\": false\n}" > ~/.config/Code\ -\
OSS/User/settings.json

Podemos instalar el sistema para que sea accesible para todos los usuarios:

sudo mv ../VSCode-linux-x64 /opt/
sudo chown -R root:root /opt/VSCode-linux-x64
sudo ln -s /opt/VSCode-linux-x64/bin/code-oss /usr/local/bin/vscode

Ej. 32: ¿Qué hace el paquete build-essential?

54

https://github.com/microsoft/vscode.git

2. Entorno VSCode
El entorno gráfico de VSCode es similar a muchos otros IDEs, con un explorador a
la izquierda, unos editor de texto separador por pestañas a laizquierda, y un
entorno de consola, terminal, depuración, etcétera en la parte inferior (oculto
haasta no emplear alguno de ellos). Puedes echar un vistazo rápido al entorno de
VSCode en https://www.youtube.com/watch?v=CxF3ykWP1H4, y de manera un poco
más detallada en https://www.youtube.com/watch?v=FzRGSlhQIyY.

Barra lateral
A la izquierda vemos la barra lateral, que contiene el explorador, el gestor de
extensiones y otros, al cual podemos acceder con los iconos más a la derecha. La
barra lateral puede abrirse y cerrarse con Ctrl+B .

El primer icono de la barra lateral pertenece
al Explorador, el cual podemos seleccionar
con Ctrl+Shift+E . Aquí aparecerán los
ficheros y directorio de nuestro proyecto.
Pulsando con el botón derecho sobre
cualquier fichero o carpeta podremos
borrarlo, renombrarlo, abrirlo en el editor
(también es posible hacerlo con doble click),
etcétera. Cuando aparezca un círculo azul
con un número, significará que hay uno o
varios ficheros sin guardar.

55

Fig. 3: VSCode

Figura 4: Explorador

https://www.youtube.com/watch?v=FzRGSlhQIyY
https://www.youtube.com/watch?v=CxF3ykWP1H4

Cuando tienes el cursor sobre el explorador, arriba aparecerán 4 iconos. De
izquierda a derecha, te permiten (1) crear un nuevo fichero, (2) Crear un nuevo
directorio (3) Refrescar, para el improbable caso de que haya habido un cambio
externo que aún no se ha reflejado y (4) Colapsar el árbol de directorios.

El segundo icono, la lupa, es el buscador.
Rellenando campo de texto, buscará lo
indicado en todos los archivos del proyecto
(pero no en node_modules), o en ciertos
ficheros, si pinchamos en los tres puntos y
rellenamos los campos. También podemos
hacer búsquedas sensibles a mayúsculas y
minúsculas, que coincidan solo con palabras
enteras, o buscar ficheros que se ajusten a una
expresión regular, pulsando los iconos a la
derecha. Finalmente, también es posible hacer la función de reemplazar.

Los iconos sobre repositorios y sobre la ejecución de programas se explicarán
más adelante.

El último icono a la derecha es el gestor de extensiones. Aparecerán las
extensiones instaladas, así como algunas extensiones del marketplace populares y
recomendadas. Podemos usar el campo de texto para buscar extensiones.
Pulsando sobre una extensión veremos los detalles y podremos instalarla y
desinstalarla.

Ej. 33: Realiza los ejercicios de expresiones regulares en VSCode.
En primer lugar, descarga el archivo y sitúa las 3 carpetas de textos de
ejercicios en un proyecto/directorio abierto por VSCode. Luego, dirígete a la
búsqueda y realiza los ejercicios de regex_ejercicios .

Ej. 34: Instala la extensión Key Promoter.

Editor de código
El editor de código está separado en pestañas, como es usual en los IDEs,
pudiendo cerrar un fichero con solo pulsar en la “x” al lado del nombre del

56

Fig. 5: Buscador

https://github.com/pruizf/tutorial-expresiones-regulares

fichero. Puedes dividir la zona de edición en varios editores pulsando el icono
que hay arriba a la derecha, y también puedes mover los ficheros abiertos de una
zona a otra arrastrando la pestaña que contiene el nombre.

El editor de código posee resaltado de sintaxis , de forma que el código aparece
con distintos colores para facilitar su lectura y edición. Si un código se presenta
todo de un mismo color, es porque aún no se ha detectado el lenguaje que usa, o
bien VSCode no posee el plugin adecuado para hacerlo. Si VSCode no posee por
defecto la capacidad para resaltar un lenguaje, posiblemente haya algún plugin
que podamos buscar en el el gestor de extensiones.

Una de las funcionalidades más interesantes del editor de código es la de
autocompletar. Ésta puede usarse con el tabulador. También necesitará saber
el lenguaje usado y poseer un plugin para ese lenguaje.

Otra funcionalidad es el formateo de código, que ajusta las tabulaciones y los
espacios del código a un formato estándar. En Linux, el atajo de teclado es
Ctrl+May+I .

Ej. 35: Crea un fichero con un programa de Python (la extensión de los
ficheros de Python es .py). Instala un plugin para añadir el resaltado de
código para Python.

Ej. 36: Visualiza un mismo fichero de código en dos editores, uno al lado de
otro (visibles ambos a la vez).

Ejecución JS con LiveServer
Una vez instalado, deberemos iniciarlo y nos aparecerá un mensaje de
bienvenida, con un botón que nos pedirá o bien crear/abrir un proyecto, y otro
botón para abrir un directorio. Pulsaremos sobre este segundo botón y
seleccionaremos una carpeta vacía donde, más adelante, iremos creando los
ficheros de ejercicios. En el menú anterior también es posible crear carpetas con
el botón que hay arriba a la derecha.

57

Tendremos ahora un panel lateral, a la izquierda, con varios botones. Pulsando el
quinto y último de ellos (un icono de cuatro bloques), deberemos buscar la
extensión Live Server (Five Server) e instalarla.

Posteriormente, podemos pinchar sobre el primero de los iconos (un icono de dos
papeles) y nos aparecerá el explorador de ficheros. Ahí podremos, ya sea
pulsando el botón derecho y seleccionando Nuevo Fichero (New File), o bien
pulsando los iconos de arriba, crear nuevos ficheros, como por ejemplo, un nuevo
fichero html.

Finalmente, pulsando sobre los nombres de los ficheros en el explorador,
abriremos el contenido del fichero, que estará vacío si acabamos de crearlo.

58

3. ¿Qué es un programa?
Un programa es un conjunto de instrucciones que son ejecutadas por el ordenador
para realizar una tarea. Por ejemplo, lo siguiente podría ser un programa
genérico compuesto por 4 instrucciones:

Pide al usuario que introduzca un número
Pide al usuario que introduzca otro número
Suma los dos números
Muestra el resultado de la suma

El ordenador ejecuta las instrucciones una a una, de forma secuencial, empezando
por la primera y continuando hacia abajo. Por tanto, en el ejemplo anterior,
empezaría pidiendo un dato, luego otro, luego realizaría la suma y finalmente
mostraría el resultado.

Además, las instrucciones se ejecutan de derecha a izquierda, de forma que, si la
instrucción tiene dos o más partes, se evalúa primero la más a la derecha, y luego
se continúa hacia la izquierda. Veremos más sobre esto en el apartado de
variables.

Áreas de sistemas y de desarrollo
Mientras está claro que los conceptos de programación son fundamentales para el
área de desarrollo de software, también son necesarios en el rea de sistema.

A la hora de mantener o implantar un sistema informático, es muy frecuente tener
que realizar una misma tarea muchas veces. También es frecuente que debamos
estar preparados para realizar una tarea previamente prevista lo más rápido
posible, con el fin de minimizar molestias e inconvenientes a los usuarios. La
creación y uso de programas en un sistema informático nos permite conseguir
ambos objetivos.

59

4. El primer programa
Usando el explorador de ficheros, crea un nuevo fichero y ponle el nombre de
index.html . Insértale el siguiente contenido:

<!doctype html>
<html lang="es">

<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width,
 initial-scale=1">

 <title>Hola mundo </title>
 <link rel="shortcut icon" href="#" />
 <link rel="icon" href="images/favicon.png"
 type="image/png" />
</head>

<body>

 <script>
 document.write("¡Mi primer programa!");
 console.log("Script ejecutado con éxito");
 </script>

</body>

</html>

Reformatear y grabar código
Cuando escribimos el código en las ventanas de contenido, podemos usar la
combinación de teclas Ctrl-Mayús-I para reformatear el código de forma
correcta. También podemos usar Ctrl-S para grabar las modificaciones.

60

5. Ejecutar el programa
Abajo a la derecha podemos ver el texto Go Live , establecido por la extensión
que instalamos anteriormente. Si pulsamos sobre él, se iniciará un navegador en
el que podremos ver el resultado de nuestra página web.

Si modificamos el fichero y lo guardamos (Ctrl-S), la página web se
autorecargará, mostrando en el navegador el resultado de la ahora modificada
web.

Ej. 1: Modifica el programa anterior para que, en vez del mensaje actual,
muestre el siguiente mensaje: ¡Hola mundo!. Bastará con que hagas los
cambios y los guardes para que automáticamente se muestren dichos cambios
en el navegador.

61

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 2: 2:

Variables yVariables y
operacionesoperaciones

1. Variables y tipos
En JS podemos definir variables. Cada variable posee un nombre y un valor. Por
ejemplo, con la siguiente instrucción definimos la variable llamada x , y le
asignamos el valor de 10.

let x = 10;

Vamos a examinar esta instrucción. Recuerda que las instrucciones son
interpretadas por el ordenador de derecha a izquierda. En este caso, JS evalúa la
parte izquierda, que tiene el valor de 10. Entonces, ese valor se lo asigna a la
variable x , con lo que x es una variable que, tras ejecutarse la instrucción,
termina valiendo 10 .

Tipos de datos básicos
Las variables pueden contener distintos tipos de datos. Los tipos básicos son los
siguientes:

• Número: let x = 15; let pesoTotal = -1.3;

Los números (number) engloban todo tipo de dato numérico, ya sea entero o
con decimales.

• Cadenas: let mensaje = “Hola” let busqueda = ”a23”;
Las cadenas (String) pueden contener números, letras y otros símbolos, y se
diferencian de los números gracias a las comillas de inicio y de fin.

• Booleanos: let hoyLlovera = true; let alarma = false;
El tipo de dato booleano tan solo tiene dos posibles valores, true o false .

• Undefined: let tema = Undefined; let kms = Undefined;
El tipo de dato Undefined (No definido) significa que el valor de la variable no
está definido.

En JS también existen otros tipos de datos (los tipos de datos Enteros largos, Null,
Symbos y Object, además de los Arrays), que los veremos más adelante.

63

Literales
Se llaman literales a los valores concretos que hay en el código. Por ejemplo, en
las instrucciones de más arriba, tenemos literales tales como: 15 , -1.3 ,
”¡Hola!” y Undefined .

Nombres de las variables
Los nombres de las variables serán descriptivos respecto a su contenido. Estos
nombres podrán tener solo:

• Dígitos (0 – 9).

• Letras, pudiendo JS soportar sin tildes, diéresis y otros.

• Símbolos de dólar y guion bajo ($ o _).

La variable NO puede empezar por un número. Es costumbre, además que, si las
variables están compuestas de varias palabras, se ponga mayúscula la primera
letra de cada palabra más allá de la primera. Ejemplo de ésto serían:
resultadoMayor , estadoDelCalefactor , dniSinLetra o arbolDeDirectorios .

NO serían correctos los siguientes nombres de variables, si se quieren seguir las
guías de estilo:

• 1camino (empieza por número).

• numerofinal (las segundas palabras deben ser mayúsculas).

• Resultado (la primera letra es mayúscula).

• OtroResultado (la primera letra es mayúscula)..

64

2. Inputs y Alerts
Uno de los comando más básicos de javascript para mostrar un número, una
cadena, o cualquier otro tipo de dato es alert .

Para introducir datos debemos ayudarnos del HTML. Deberemos crear un campo
de texto para cada dato. También podemos usar un botón para “disparar” la
acción que deseamos hacer. Para ello utilizaremos el elemento onClick

llamando a una función.

En JS, podemos acceder a un elemento HTML concreto con
document.getElementById('...') , substituyendo los puntos suspensivos por la id

del elemento. Los elementos obtenidos son de tipo cadena, por lo que, para
realizar operaciones con ellos, deberemos utilizar la instrucción parseInt.

<body>
 <input id="input1" type="text" />
 <input id="input2" type="text" />

 <input id="action" type="button" value="Sumar" />
 <label id="res">---</label>

 <script>

 document.getElementById('action').onclick = function () {
 let cad1 = document.getElementById('input1').value;
 let int1 = parseInt(cad1);
 let cad2 = document.getElementById('input2').value;
 let int2 = parseInt(cad2);
 let rslt = int1 + int2;

 document.getElementById('res').innerHTML = rslt;
 };

 </script>
</body>

65

3. Cadenas
Como hemos visto arriba, una variable puede almacenar, en vez de un número,
una cadena. Por ejemplo, la instrucción siguiente, define una variable llamada
mensaje, cuyo contenido es Hola :

let mensaje = "Hola";

Observa que, para que el contenido de la variable sea Hola , hemos tenido que
asignarle "Hola" . Esto es porque, en JS, todos los literales de cadenas se
escriben entre comillas, con el fin de que el ordenador pueda diferenciarlas del
resto del código. En JS, para definir, podemos usar tanto comillas simples como
dobles, mientras coincida el tipo inicial y el final. Además, es posible insertar
unas comillas del otro tipo dentro de la cadena. Los siguientes ejemplos también
son válidos:

let mensaje = 'Hola';
let mensaje = '"Este texto" es una cita';
let mensaje = "'Este texto' es una cita";

Concatenar cadenas
Es posible crear cadenas más largas uniendo otras más cortas, usando la
concatenación. Para ello, simplemente usamos el símbolo + entre ellas. En
dicha concatenación es posible combinar tanto literales de cadenas como
variables de tipo cadena en la forma que deseemos:

let mensaje_base = "Hola.";
let numero = "3";
let mensaje_final = mensaje_base + " El número es ";
let mensaje_final = mensaje_final + numero + ".";
alert(mensaje_final); //Imprime: Hola. El número es 3.

Ej. 2: Crea un programa que pida al usuario tres cadenas (esto serían tres
campos de texto), y que, al pulsar un botón luego se muestre un único mensaje
con el contenido de los tres campos de texto concatenados, pero separadas por
un punto y un espacio. Por ejemplo, si el usuario introduce las siguientes
cadenas: Hola mundo , Lunes y Dia 13 , entonces el programa imprimirá
Hola Mundo. Lunes. Día 13 .

66

Longitud de una cadena
Para obtener la longitud de una cadena, se emplea:

«cad».length Devuelve un número con la longitud de de la cadena.

let saludo = "¡Hola!"
let longitud = saludo.length;
alert(longitud); // Imprime: 6

Subcadenas
Existen dos métodos para obtener subcadenas:

«cad».substr(«inicio») Devuelve una subcadena que contiene desde el carácter
de inicio (incluido) hasta el fin de la cadena.

«cad».substr(«inicio», «longitud») Devuelve una subcadena que contiene
desde el carácter de inicio (incluido) y contiene tantos caracteres como los
indicados en longitud (o hasta el final de la cadena). El primer carácter de la
cadena es el carácter número cero.

let letras = "abcdef";
let subcadena1 = letras.substr(1);
alert(subcadena1); // Imprime: bcdef.

let subcadena2 = letras.substr(2,3);
alert(subcadena2); // Imprime: cde

let subcadena3 = letras.substr(2,10);
alert(subcadena3); // Imprime: cdef

También es posible utilizar números negativos en el parámetro “inicio”. Un
número negativo indica el carácter i-ésimo contado desde el final.

let digitos = "987654321";
let subcadena = digitos.substr(-7, 4)
alert(subcadena) //Imprime: 7654

Ej. 3: Crea un programa en el que el usuario escriba una cadena (asume que
ésta tendrá al menos 2 caracteres) y el programa muestre la misma cadena,
pero sin el primer carácter.

67

Ej. 4: Crea un programa en el que el usuario escriba una cadena (asume que
ésta tendrá al menos 2 caracteres) y el programa muestre los 2 primeros
caracteres de dicha cadena.

Ej. 5: Crea un programa en el que el usuario escriba una cadena (asume que
ésta tendrá al menos 3 caracteres) y el programa muestre los 3 últimos
caracteres de dicha cadena.

Ej. 6: Crea un programa en el que el usuario escriba una cadena (asume que
ésta tendrá al menos 5 caracteres) y el programa muestre los 5 primeros
caracteres de dicha cadena, luego un guion, y luego el resto de la cadena.

Ej. 7: Escribe otro programa en el que el usuario introduzca una cadena.
Tras ello, el programa almacenará en una variable cuál es la mitad de la
longitud de dicha cadena. Finalmente, usando substr y la variable anterior, el
programa imprimirá la segunda mitad de la cadena.
Ejemplo: si la cadena es 12345, se imprimirá 345.

«cad».indexOf(«subcad») Devuelve la primera ocurrencia de «subcad» dentro
de «cad». Si no encuentra «subcad» dentro de «cad», entonces devuelve -1.

let cadena = "Hola mundo";
let index = cadena.indexOf("mundo");
alert(index); //Imprime: 5

Como curiosidad, este código puede compactarse en el siguiente:

alert("Hola mundo".indexOf("mundo")); //Imprime: 5

Ej. 7b: Realiza un ejercicio en el que el usuario introduzca dos cadenas, una
cadena base y una cadena de búsqueda. El programa deberá decir en qué
posición se encuentra la cadena de búsqueda dentro de la cadena base. Si no
se encuentra, mostrará -1.
Ej. 7b: (corregir numeración 7b para el próximo curso).

68

Ej. 7c: Realiza un ejercicio en el que el usuario introduzca dos cadenas, una
cadena base y una cadena de búsqueda. El programa deberá mostrar primera
cadena (la cadena base), pero solo desde el punto en que se encuentra la
segunda cadena (la cadena búsqueda).
No tengas en cuenta la posibilidad de que el usuario introduzca una cadena de
búsqueda que no esté dentro de la cadena base.
Ejemplo: Hola mundo, ¿qué tal? y mundo devolverá la cadena: mundo,
¿qué tal? .

Ej. 7c: (corregir numeración 7c para el próximo curso).

69

4. Números
Las operaciones básicas en JS son las siguientes:

«num_1» + «num_2» suma dos números.

«num_1» - «num_2» resta dos números.

«num_1» * «num_2» Multiplica dos números. Observa que se usa el asterisco,
nunca la equis (x), el aspa (×) ni ningún otro carácter.

Conversión Cadena Número⬄
Observa que, para realizar correctamente las operaciones numéricas, «num_1» y
«num_2» deben ser variables de tipo número, no de tipo cadena. El problema
aquí, es que con las instrucciones de document.getElementById('...').value;

devuelven valores de tipo cadenas:

let op1 = document.getElementById('op1').value; //op1, op2 son
let op2 = document.getElementById('op2').value; // cadenas

let suma = op1 + op2 //Concatena op1 y op2
alert(suma) //imprime op1 y, luego, op2, no la suma

Para solucionarlo, usamos parseInt para convertir las cadenas a datos numéricos:

let op1 = document.getElementById('op1').value; //op1, op2 son
let op2 = document.getElementById('op2').value; // cadenas

let num1 = parseInt(op1);
let num2 = parseInt(op2);
let suma = num1 + num2 //Suma los números

alert(suma) //imprime la suma

En este código de arriba, la suma es una variable definida a partir de la suma de
dos números, por lo que también es una variable de tipo numérico.

Ej. 8: Escribe un programa en el que el usuario deba introducir un número
que exprese una cantidad entera de litros. Una vez introducida la cantidad,
dicho programa convertirá ese valor a cc3 (centímetros cúbicos) y mostrará el
resultado.

70

Ej. 9: Escribe otro que convierta lb (libras) a Kg (kilogramos).

Ej. 10: Escribe otro programa en que el usuario deba introducir 3
números, que representarán horas, minutos y segundos al total de
segundos.
El programa calculará el número de segundos totales qu representa lo anterior.
Por ejemplo, si se le introduce 1 horas, 2 minutos y 3 segundos, devolverá
3723 segundos (1 * 60*60 + 2 * 60 + 3 = 2723).

Ej. 11: Escribe otro que convierta grados centígrados a grados fahrenheit.

Ej. 12: Escribe un programa que convierta cc/s (litros por cada segundo) a
l/h (litros por cada hora). Nota: 1 cc/s equivale a 3.6 l/h

Ej. 13: Escribe otro que convierta de kilómetros cuadrados a millas
cuadradas.

Ej. 14: Escribe otro programa que convierta milibar (milibares) a lb/pie2
(libras por cada pie cuadrado).

«num_1» / «num_2» Divide dos números. Aún en caso de que se dividan
números enteros, el resultado de la división será un número en coma fotante.

Math.floor(«num_1») Redondea al entero justo menor a «num1».

Math.ceil(«num_1») Redondea al entero justo mayor a «num1».

Math.trunc(«num_1») Remueve la parte decimal de «num1».

Math.round(«num_1») Redondea al entero más cercano a «num1». Un número
con parte decimal igual a .5 se redondeará al entero superior.

- 3.7 - 3.5 - 3.1 3.1 3.5 3.7
floor - 4 - 4 - 4 3 3 3

ceil - 3 - 3 - 3 4 4 4

trunc - 3 - 3 - 3 3 3 3

round - 4 - 3 - 3 3 4 4

71

«num_1» % «num_2» Devuelve el resto de la división. Observa que el módulo
siempre será menor que el valor absoluto de num_2, y siempre igual o mayor que
0.

let num1 = 7;
let num2 = 3;

let div = num1 / num2;
alert(div); //Imprime: 1.6666666666666667

let div_entera = Math.floor(num1 / num2);
alert(div_entera); //Imprime: 2.

let modulo = num1 % num2;
alert(modulo); //Imprime: 1 (7 entre tres es 2, y sobra 1).

Ej. 15: Tenemos cierta cantidad de ordenadores, y queremos asignarlos a
diversas aulas, de forma que cada aula contenga exactamente el mismo
número de ordenadores.
Escribe un programa en el que se pueda introducir el número de ordenadores
disponibles y las aulas existentes. Con ello, calculará y mostrará cuántos
ordenadores cabrán en cada aula, y cuántos ordenadores sobrarán.
Por ejemplo, si tenemos 7 ordenadores y 2 aulas, entonces cabrán 3
ordenadores por aula y sobrará un ordenador.

Ej. 16: Escribe un programa en el que el usuario indique el número de Kg
totales a trasportar y el número de Kg que puede transportar el camión en un
viaje. El programa debe devolver el número de veces que el camión debe
viajar para trasportar toda la carga.
Haz el ejercicio de dos formas. La primera, usando Math.floor. Para evitar
condicionales, asume que la última carga a transportar nunca van a ser
completa. La segunda, usando Math.ceil, si que te permitirá que la última
carga sea exacta.

«num_1» ** «num_2» Devuelve num_1 exponentado por num_2.

let num1 = 5;
let num2 = 3;

72

let exponente = num1 ** num2;
alert(exponente); //Imprime: 125 (5 x 5 x 5 = 125).

Ej. 17: Crea un programa que calcule el número de combinaciones posibles
con n bits, donde n es indicado por el usuario.

Ej. 18: Escribe un programa en el que el usuario deba introducir dos
números, tras lo cual el programa calculará y mostrará todos los siguientes
valores, cada apartado en una línea distinta:

a) La suma de ambos números
b) La resta del primero menos el segundo.
c) La multiplicación de ambos números.
d) La división del primero entre el segundo.
e) La división entera entre ambos y, justo después, entre

 paréntesis, que muestre el resto de la división.
f) El primer número elevado al segundo.

Ej. 19: Pon a prueba el programa introduciendo distintos valores, como por
ejemplo, que el primer valor sea menor que el segundo (¿qué sucede en la
resta y en la división entera?) o que el segundo número sea cero (¿qué sucede
en la división?).

Ej. 20: Una empresa de papelería tiene distintos productos, que vienen
siempre en cajas. Todas las cajas contienen el mismo número de productos.
Escribe un programa que pregunte el número de cajas y los productos por
caja. Con ello calculará y mostrará el número de productos totales.

Ej. 21: Escribe otro programa, parecido al anterior, en el que se pregunte el
número de productos en cada caja, el número de cajas en un palé, y el número
de palés. El programa calculará el número total de productos.

73

5. Booleanos
Los booleanos (tipo boolean) son un tipo de dato que solo puede tomar dos
valores: verdadero (true) o falso (false).

! «bool» devuelve el valor contrario al contenido por «bool».

«bool_1» && «bool_2» devuelve true solo si tanto «bool_1» como «bool_2 son
true.

«bool_1» || «bool_2» devuelve true si cualquiera, «bool_1» o «bool_2», son true.

let hoyLlueve = false;
let mananaLlueve = true;
alert(!hoyLlueve)); //Imprime: true
alert(hoyLlueve && mananaLlueve); //false
alert(hoyLlueve || mananaLlueve); //true

Para convertir una cadena a booleano se hace de forma especial, con una
comparación estricta con la cadena true . En este ejemplo se usa también la
integración del código JavaScript con inputs y etiquetas HTML, en vez de usar
alerts:

let op = document.getElementById('op').value; //cadena

let bool1 = (op === 'true'); //bool1 es booleano
document.getElementByID('r').innerHTML = !bool1;
 //imprime lo contrario de bool1

Comparadores
Nos permiten comparar números entre si. El resultado de todos los comparadores
es un valor de True o bien False.

«num_1» == «num_2» Devuelve true si son iguales, o false si son distintos.

«num_1» > «num_2» Devuelve true si «num_1» es mayor que «num_2», o
false en caso contrario.

«num_1» >= «num_2» Devuelve true si «num_1» es mayor o igual que
«num_2», o false en caso contrario.

74

«num_1» < «num_2» Devuelve true si «num_1» es menor que «num_2», o
false en caso contrario.

«num_1» <= «num_2» Devuelve true si «num_1» es menor o igual que
«num_2», o false en caso contrario.

«num_1» != «num_2» Devuelve true si «num_1» y «num_2» son distintos, o
false en caso contrario.

Además, podemos combinar los comparadores entre si y con las operaciones
booleanas básicas para crear expresiones más complejas:

let inputVol = document.getElementById('volumen').value;
let inputBrillo = document.getElementById('brillo').value;

let vol = parseInt(inputVol); //Convierte a entero
let brillo = parseInt(inputBrillo); //Convierte a entero

let ok = (vol>=20 && vol<=75 && brillo>20 && brillo<80);
document.getElementByID('r').innerHTML = "¿Se ve ok?: " + ok;
 //Imprime true si volumen está entre 20 y 75 y además el
 // brillo está entre 21 y 79, o false en caso contrario.

Ej. 22: Escribe un programa en el que el usuario introduzca dos números, e
indique si el primero es menor o igual que el segundo.

Ej. 23: Escribe otro programa en el que el usuario introduzca tres números,
y el programa indique si están ordenados de mayor a menor.
Estarán ordenados de mayor a menor si el primero es mayor que el segundo, y
además, el segundo es mayor que el tercero.

Ej. 24: Escribe otro programa en el que el usuario introduzca tres números,
e indique si existen números repetidos.
Habrá números repetidos si, y solo si, el primero es igual al segundo, o bien el
primero es igual al tercero, o bien el segundo es igual al tercero.
Ejemplo: si el usuario introduce 8, 8 y 9, devolverá true. También devolverá
true si el usuario introduce 9, 9 y 9.
Nota: Deberás hacer dos (y solo dos) comparaciones.

75

Ej. 25: Escribe otro programa en el que el usuario introduzca tres números,
y el programa indique si están ordenados. Es decir, devolverá true tanto si
están ordenados de forma creciente como si están ordenados de forma
decreciente.

Ej. 26: Escribe otro programa en el que el usuario introduce la longitud en
centímetros de una estantería. Además, indicará el grosor de los libros que
van a ir en ella y el número de libros. El programa indicará si la estantería
puede contener esos libros.

76

6. Ejercicios adicionales
Ej. 26b: Crea un programa en la que el usuario introducirá una hora en
formato HH/MM Usando solo indexOf y substr, el programa mostrará “La
hora es HH, y los minutos MM” (subtituyendo HH y MM por los introducidos
por el usuario).

Ej. 26c: Crea un programa en la que el usuario introducirá una fecha en
formato DD/MM/AA. El programa mostrará “El día es DD, el mes MM y el
año AA” (subtituyendo DD, MM y AA por los introducidos por el usuario).

Ej. 26d: Usando solo substr e indexOf, crea un programa en la que el
usuario introducirá una cadena que tendrá al menos un carácter & .
Devolverá solo lo que hasta ese carácter, éste no incluido.
Ejemplo: si se introduce abc&de , se devuelve abc .

Ej.   26e: Usando solo substr, crea un programa en la que el usuario
introducirá una cadena (que tendrá al menos 3 caracteres), y devuelva una
cadena igual pero con el primero ni el último carácter.
Ejemplo: si se introduce abcde , se devuelve bcd .

Ej. 27: Escribe un programa en el que el usuario introduzca una cadena que
contenga un paréntesis de apertura y otro de cierre. El programa imprimirá la
cadena que hay en medio. Por ejemplo, si el usuario introduce ab(cde)fg , el
programa sacará ‘cdf’ .

Ej. 28: Escribe un programa en el que el usuario introduzca una cadena que
contenga dos (y solo dos) guiones. Devolverá la cadena entre los guiones.
Por ejemplo, si el usuario introduce ab-cde-fg , el programa sacará cde . Usa
tan solo substr e indexOf para resover el ejercicio.
Pista: busca el primer guion y crea una subcadena que vaya desde el primer
guion hasta el final (en nuestro ejemplo cde-fg). Luego, en esa cadena
resultante, crea una subcadena que vaya desde el principio hasta el segundo
guion.

77

Ej. 28b: Usando solo indexof y substr, analiza una cadena introducida por el
usuario, que tendrá una o dos barras (/).
Pista: busca la primera barra y crea una subcadena que vaya desde justo
después de la primera barra hasta el final (por ejemplo, si el usuario introduce
ab/cd/ef , la nueva cadena será cd/ef). Luego, en esa cadena resultante,

busca de nuevo si hay barra usando indexOf: si la hay, entonces hay dos
barras en la cadena inicial, si no la hay (indexOf devuelve -1) entonces había
una sola barra en la cadena original.

Ej. 29: Crea un programa como el anterior. Sin embargo, en vez de
devolver la cadena entre los guiones, devolverá el número de caracteres que
hay en cada uno de los segmentos. Por ejemplo, para la cadena ab-cde-fg , el
programa devolverá 2 , 3 y 2 .

Ej. 30: Crea un programa en el que el usuario indique la longitud que hay
que construir de un bordillo de una calle, el cual está formado por una hilera
de adoquines. Además, el usuario especificará la longitud de cada adoquín.
El programa indicará la longitud del último adoquin, que habrá que acortar
para ajustarse a la longitud total.

Ej. 31: Escribe otro en el que el usuario introduzca dos las dimensiones de
una parcela rectangular (longitud y anchura expresado en metros). Luego,
deberá introducir el espacio que ocupa cada planta que quiere plantar en
dicha parcela, expresado también en metros (cada planta ocupa un cuadrado
perfecto de lado al indicado por el usuario). El programa debe calcular la
cantidad de plantas que caben en la parcela.

Ej. 31b: Crea un programa que convierta el formato decimal de horas a
formato horario. Redondea al minuto más cercano.
Ejemplo: 6,75h se transformará en 6:45h

Ej. 31c: Crea un programa que transforme una coordenada 2D hacia la
coordenada más cercana que tenga valores enteros.
Ejemplo: la coordenada (2.1,7.1) se transforma a (2,7) .

78

Ej. 31d: Crea un programa que transforme una coordenada 2D hacia la
coordenada que tenga valores enteros más cercana al origen.
Ejemplo: la coordenada (2.1, 0.1) se transforma a (2,0). y la coordenada
(-3.5,-7.3) se convierte en (-3,-7).

Ej. 32: Escribe otro en el que el usuario introduzca también longitud y
anchura de la parcela (expresados en metros), y el espacio por planta (también
expresado en metros). Deberá calcular los metros cuadrados sobrantes.

Ej. 33: Tenemos un palé el cual el usuario indicará cuántos centímetros
tendrá de ancho, profundo y alto. También introducirá el ancho, profundo y
alto de cada caja de producto.
El programa indicará cuántas cajas de producto caben en un palé. Observa
que una pequeña parte del espacio del palé puede que se quede vacía.

79

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 3: 3:

CondicionalesCondicionales

1. Condicional simple
En el condicional simple, una o varias instrucciones se ejecutan dependiendo de si
se satisface una condición o no. La condición se pone después de la palabra
reservada if , y la(s) instrucción(es) a ejecutar solo en el caso de que la
condición sea cierta, se ponen justo debajo, con una sangría de 4 espacios:

let inputNumero = document.getElementById('volumen').value;
let numero = parseInt(inputNumero);
alert(“Inicio”) //Estas 3 líneas se ejecutan siempre

if(numero>3){ //Condición
 let mensaje = “Es mayor que tres”; //Se ejecutan solo
 alert(mensaje); // si numero>3.
}

alert(“Fin de programa”) //Se ejecuta siempre

En el programa de arriba, tras el mensaje de Inicio , se comprobará si número

es mayor que 3, en cuyo caso se imprimirá el mensaje Es mayor que tres .
Luego, en otra línea, se imprimirá Fin .

En caso de que numero sea menor o igual que tres, tan solo se mostrarán los
mensajes de Inicio y de Fin del programa .

Observa que, en este caso, tras la sentencia de if existen dos instrucciones (las
dos que están entre las llaves) que se ejecutarán tan solo si la condición es cierta.
En otros programas, podría haber una cantidad distinta de instrucciones (todas
ellas entre las llaves).

Ej. 1: Escribe un programa que pida dos números al usuario, tras lo cual, el
programa imprimirá el mensaje ‘Inicio de programa’ . Tras ello, mostrará
’Son distintos’ pero solo si los números son distintos entre si (si son

iguales, no imprimirá dicho mensaje). Luego, y en todo caso, mostrará ‘Fin
de programa’ . Solo para este ejercicio, usa alert en vez de escribir en una

etiqueta.

Ej. 2: Escribe otro programa que pida al usuario un número y, si es divisible
entre 3, indique ‘Divisible entre 3’ .

81

Ej. 3: Escribe otro que también pida una cadena, tras lo cual el programa
imprimirá la misma cadena. Tras ello, si la cadena tiene 10 caracteres o más,
entonces el programa imprimirá la cadena al revés.

Ej. 4: Escribe otro que pida una cadena al usuario. Si la cadena mide mas
de 5 caracteres, el programa sobrescribirá el contenido de la cadena con
error . Finalmente, mostrará el contenido de la cadena.

Ejemplos: Si el usuario introduce abcde , el programa devolverá error . Si
la cadena introducida es 1234 , se devolverá 1234 .

Ej. 5: Escribe otro programa, muy similar al anterior. Pedirá una cadena al
usuario y, si la cadena mide menos de 5 caracteres, el programa imprimirá la
cadena concatenada consigo misma. En caso contrario, mostrará tan solo la
cadena de entrada.
Ejemplos: Si el usuario introduce abc , el programa devolverá abcabc . Si la
cadena es 12345 , se devolverá 12345 .

Ej. 6: Escribe otro que pida dos cadenas. El programa indicará la posición
de la segunda cadena en la primera (para ello, puedes usar la función
indexOf). Sin embargo, si la segunda cadena no está en la primera, también se
imprimirá en mensaje Cadena no contenida .
Nota: Cuando una cadena no está contenida en otra, la función indexOf
devolverá -1.

Ej. 7: Escribe otro que pida dos cadenas. El programa indicará la posición
de la segunda cadena en la primera (para ello, puedes usar la función
indexOf). Tras ello, si dicha posición está en la primera mitad de la cadena, el
mensaje incluirá también , Está en la primera mitad .
Ejemplos: La primera cadena es abcdef y la segunda cd . La función index
devolverá 2 Está en la primera mitad (ya que la posición de b es 2.

Condiciones complejas
Observa que la condición puede ser una expresión tan simple o tan compleja
como sea necesario. El único requisito es que dicha condición debe ser una

82

expresión lógica cuyo resultado, al ser la expresión evaluada por Python, sea
True o False .

let inputNumero = document.getElementById('volumen').value;
let numero = parseInt(inputNumero); //Se ejecutan siempre

if(3<numero && numero<5){ //Condición lógica
 let mensaje = “Entre tres y cinco” // Se ejecutan solo
 alert(mensaje) // si 5>numero>3.
}

alert(“Fin del programa”) //Se ejecuta siempre

También es posible utilizar una variable de tipo booleano como condición. El
programa anterior y el siguiente se comportan de forma idéntica:

let inputNumero = document.getElementById('volumen').value;
let numero = parseInt(inputNumero); //Se ejecutan siempre

let enRango = numero>3 && numero<5;
if(enRango){ //condición
 mensaje = “Entre tres y cinco”; //Se ejecutan solo si
 print(mensaje); // enRango == true.
}

alert(“fin del programa”); //Se ejecuta siempre

Ej. 8: Escribe un programa que pida al usuario el volumen (de 0 a 100). Si
el volumen está entre 20 y 80 (ambos inclusive), el programa mostrará
Volumen adecuado . Luego, en todo caso, mostrará Fin de programa .

Ej. 9: Escribe un programa que pida al usuario el volumen (de 0 a 100). Si
el volumen es menor que 20 o mayor que 80, el programa mostrará Volumen
inadecuado . Luego, en todo caso, mostrará Fin de programa .

Ej. 10: Escribe un programa que pida al usuario tres números. El programa
imprimirá los tres números. Tras ello, imprimirá Son iguales si los tres
números son iguales.

83

Ej. 11: Escribe un programa que pida al usuario tres números. El programa
imprimirá los tres números. Tras ello, imprimirá Son distintos si los
cualquiera de los tres números es distinto.

Ej. 12: Escribe un programa que pida un número al usuario y que imprima
uno de los siguientes mensajes: Es mayor que 7 o bien Es menor que 7 ,
dependiendo de si el número introducido es mayor o menor que 7.
Pista: necesitarás dos sentencias if simples para hacerlo (esto puede hacerse
de mejor forma usando condicionales más complejos que veremos más
adelante).

84

2. Anidar condicionales
Es posible introducir unos condicionales dentro de otros:

let carta = = document.getElementById('carta').value;
let palo = = document.getElementById('palo').value;
if(palo==”corazones”){
 if(carta==”Q”){
 document.getElementById('rslt').innerHTML =
 "Es la Reina de Corazones";
 }
}

Observa que programa anterior puede simplificarse, usando un único condicional.

let carta = document.getElementById('carta').value;
let palo = document.getElementById('palo').value;
if(palo==”corazones” && carta==”Q”){
 document.getElementById('rslt').innerHTML =
 "Es la Reina de Corazones";
}

Existen otros casos en los que si que es necesario anidar condicionales. En el
ejemplo siguiente se calculan los puntos de la carta introducida por el usuario (si
es de corazones, vale un punto, y si es la reina de corazones, vale 3 puntos).

let carta = document.getElementById('carta').value;
let palo = document.getElementById('palo').value;
let puntos = 0;
if(palo==”corazones”){ //Solo corazones vale puntos
 puntos = 1;
 if(carta == ”Q”){ //La única reina que vale puntos
 puntos = 3; // es la reina de corazones
 }
}
document.getElementById('rslt').innerHTML = puntos;

Observa que, en el programa anterior, solo se introduce en el bucle interior si la
carta es de corazones y una reina, puesto que para que se evalúe la condición
carta==”Q” , antes ha tenido que ser cierta la condición palo == ”corazones” .

Ej. 13: Escribe un programa en el que el usuario introduce una cadena. Si
dicha cadena posee más de 10 caracteres, imprimirá el mensaje ‘Es una

85

cadena larga’ . Si posee más de 20 caracteres, imprimirá, además, otro
mensaje ‘Demasiado’ .

Ej. 14: Escribe un programa que haga lo mismo que el anterior, pero que,
en caso de que la cadena tenga 30 caracteres, ponga otro mensaje ‘Te has
colado’ .

Ej. 15: Escribe un programa que haga lo mismo que el anterior, pero que
muestre los mensajes en la misma línea. Pista: concatena los mensajes.

Ej. 16: Escribe un programa en el que el usuario introduce los dos números
de una ficha de dominó. El programa calculará los puntos que vale la ficha:
Cada ficha vale un punto, si es un doble, vale 2 puntos, y la ficha doble seis
vale 5 puntos.

86

3. Estructura else if
Un condicional puede ampliarse con una cláusula elif (también llamada
cláusula SINO).

let numero = document.getElementById('numero').value;

if (numero>5){ //condición
 mensaje = "Mayor que 5"; //Se ejecutan solo si numer>5
 document.getElementById('rslt').innerHTML = mensaje;

} else if(numero>=3){
 mensaje = "Entre 3 y 5"; //Solo si numero>=3 pero no >5
 document.getElementById('rslt').innerHTML = mensaje;
}

Una clausula else if es una concatenación de condicionales if, por lo que no debe
encontrase sola. Si es necesario, también pueden acumularse varios else if:

let numero = document.getElementById('numero').value;

if(numero>1000){
 document.getElementById('rslt').innerHTML = "Pos. grande";
} else(if numero>0){
 document.getElementById('rslt').innerHTML = "Positivo";
} else if(numero==0){
 document.getElementById('rslt').innerHTML = "Cero";
} else if(numero<0){
 document.getElementById('rslt').innerHTML = "Negativo";
}

Ej. 17: Realiza el ejercicio 12 de los condicionales con condiciones
complejas usando tan solo un condicional más su cláusula SINO. Nota:
Observa que (tanto en este programa como en ej_12.html) si el número
introducido por el usuario es igual a 7, el programa no imprime nada.

Ej. 18: Crea el menú de una calculadora básica en el que el usuario
introducirá dos números en dos campos de texto, y también seleccionará una
operación entre suma, resta, multiplicación y división.
El select tiene una sintaxis HTML como la siguiente:
 <select id="op">

87

 <option value="suma">+</option>

 . . .

 </select>

Para saber qué opción está seleccionada, se emplea una instrucción igual que
las ya empleadas:
 let operacion = document.getElementById('op').value;

El programa, al pulsar un botón, realizará la operación seleccionada
imprimiendo el resultado en una etiqueta.

88

4. Cláusula else
Cuando un condicional incluye una cláusula else, ésta se ejecuta si y solo si no se
ejecuta ninguna de las cláusulas anteriores.

let cad = document.getElementById('cad').value;
let longitud = cad.length;

if(longitud<=1){
 document.getElementById('rslt').innerHTML = "Muy Corta";
else{
 document.getElementById('rslt').innerHTML =
 cad.substr(0,2);
}

La cláusula if puede combinarse con una o varias cláusulas else if:

numero = int(input("Número: ")) #Se ejecuta siempre

if(numero>5){ //condición
 mensaje = "Mayor que 5" //Se ejecutan solo si numero>5
 document.getElementById('rslt').innerHTML = mensaje;
}else if(numero>=3){
 mensaje = "Entre 3 y 5" //Solo si numero>=3 pero no >5
 document.getElementById('rslt').innerHTML = mensaje;
}else{
 mensaje = "Menor que 3" //Solo si ninguna otra se cumple
 document.getElementById('rslt').innerHTML = mensaje;
}

Una clausula else es siempre parte de un condicional if, por lo que no debe
encontrase sola.

Ej. 19: Escribe un programa que pida al usuario un número. Si es par, el
programa indicará ‘Es par’ , y si es impar, el programa indicará ‘Es
impar’ . Utiliza un único if con cláusula else para hacerlo.

Ej. 20: Escribe un programa que indique si una cadena tiene más de 10
caracteres, con ‘Tiene más de 10 caracteres’ o no ‘Tiene 10 o menos
caracteres’ .

89

Ej. 21: Escribe un programa que pida al usuario un número, y muestre si es
positivo (‘Es positivo’), negativo (‘Es negativo’) o cero (‘Es cero’).

Ej. 22: Escribe un programa que pida al usuario dos números, que
representarán la parte real e imaginaria de un número complejo. El programa
indicará el cuadrante (‘Cuadrante 1’ , etc.) o eje (’Eje imaginario

positivo’ , ‘Eje real negativo’ , etc.) o bien cero (‘ Cero’) en que se sitúa
el número:

90

5. Ejercicios adicionales

Ej. 23:  Escribe un programa en el que el usuario escriba un número con
decimales, y el programa redondee hacia el entero más próximo a 0.
Ejemplos: 3.7 es redondeado a 3 . -3,7 es redondeado a -3 .
Pista 1: Para redondear un número a su entero más bajo, puedes usar la
división entera. Por ejemplo 3.7 // 1 = 3.0 , -3.7 // 1 = -4 , y -3.0 //
1 = 3.0 .

Pista 2: Con lo anterior, vemos que, solo con incrementar los números
negativos con, podemos dar el resultado correcto. Los números que no tienen
decimales (3.0 , -4.0 , etc.) cumplen lo siguiente: numero == numero // 1 .

Ej. 24: Escribe un programa en el que el usuario introduce los dos números
de una ficha de dominó. El programa calculará los puntos que vale la ficha:
Cada ficha vale igual a la suma de sus dos números. Si la suma es mayor que
6, los puntos valen el doble y si además de ello (que la suma sea mayor que
6), es una ficha doble, los puntos vale cuatro veces la suma de sus números.

Ej. 25: Crea un programa en el que el usuario introduzca una palabra en
singular y en minúsculas. Si la palabra la palabra termina en a , d , ón , z ,
is , ie o umbre , el probrama dirá ’probable género femenino’ . Eso si, si

terminase en l , o , n , e , r , s , ma o ta , el programa dirá ’probable
género masculino’ . Si no termina en ninguno de los anteriores, mostrará
‘Incierto’ .

91

6. Ejercicios de refuerzo

Ej. 26: Escribe un programa que pida dos cadenas, de forma que la segunda
estará contenida en la primera. El programa indicará la posición de la
segunda cadena en la primera. Tras ello, si la posición es igual a 0, el
programa añadirá un segundo mensaje diciendo Al principio .
Ejemplo: si las cadenas son 12345 y 123 , el programa mostrará ’0’ , y
luego otro mensaje Al principio .

let cad1 = prompt("Cadena 1: ");
let cad2 = prompt("Cadena 2: ");
let posicion = cad1.indexOf(cad2);

print(posicion);
if(posicion1 == 0){
 alert("Al principio")
}

Ej. 27: Escribe un programa que pida dos cadenas, de forma que la segunda
estará contenida en la primera. El programa indicará la posición de la
segunda cadena en la primera. Tras ello, si la cadena está al final, el
programa añadirá un segundo mensaje diciendo Al final .
Ejemplo: si las cadenas son 123457 y 4567, el programa mostrará 2 , y luego
otro mensaje Al final .
Pista: Suma de la posición obtenida con index() a la longitud de la segunda
cadena, y comparala con la longitud de la primera.

Esta vez, debemos de mostrar si la cadena está al final. Sin embargo, en el
ejercicio anterior, la variable posición almacena la posición del primer carácter de
cad2 en cad1 (por ejemplo, con cad1: abcd y cad2: bc , la variable posicion

almacenaba el valor 1 (que es la posición del carácter b en cad1). Para
averiguar la posición del último carácter (en este ejemplo, la posición de c en
cad1), debemos sumar la longitud de cad2. Tras ello, comparamos posición con
la longitud de cad1.

let cad1 = prompt("Cadena 1: ");
let cad2 = prompt("Cadena 2: ");

longitud1 = cad1.length;

92

longitud2 = cad2.length;
let posicion = cad1.indexOf(cad2) + longitud;

print(cad1.indexOf(cad2));

if(posicion == longitud1){
 alert("Al final")
}

Ej. 28: Combina los dos ejercicios anteriores en otro programa que te
muestre la posición y luego te muestre, si es el caso, Al final o Al final .
Nota: observa que, si la segunda cadena es igual a la primera, se deberán
mostrar los dos mensajes: ej: si las cadenas son 12345 y 12345 , se mostrarán
ambos mensajes.

Simplemente debemos combinar los dos condicionales anteriores (cambiando
levemente algunos nombres de variable). Puesto que ambas condiciones son
independientes (una cadena puede estar al principio, al final, en ambas, o en
ninguna), se tratará de condicionales separados:

let cad1 = prompt("Cadena 1: ");
let cad2 = prompt("Cadena 2: ");

let longitud1 = cad1.length
let longitud2 = cad2.length
let posicion1 = cad1.indexOf(cad2);
let posicion2 = cad1.indexOf(cad2) + longitud2;

print(posicion1);
if(posicion1 == 0){
 alert("Al principio");
}
if(posicion2 == longitud1){
 alert("Al final");
}

Ej. 29: Escribe un programa en el que el usuario introduzca una cadena. Si
la cadena tiene un número de caracteres par, el programa devolverá la misma
cadena, pero en mayúsculas. Si el número de caracteres es impar, devolverá
la cadena en minúsculas.
Ejemplo: Si se introduce la cadena Hola007 , al tener 7 caracteres (impar),
devolverá hola007 .

93

Nota: para pasar a mayúsculas, usa «cad».toUpperCase(), y para las
minúsculas, «cad».toLowerCase().

En este caso, según una condición (que la longitud sea par o no), deberemos
hacer una cosa u otra. Es decir, son dos casos excluyentes, y siempre se va a dar
uno u otro. Por tanto es un caso de if con un else.

let cad = input("Cadena: ");
let longitud = cad.length;
if(longitud%2 == 0){ //longitud par
 alert(cad.toUpperCase());
}else{ //longitud impar
 alert(cad.toLowerCase());
}

Ej. 30: Escribe un programa en el que el usuario introduzca una cantidad
entera de euros, y luego indique si es socio (si) o no (no). Si la cantidad de
euros es mayor o igual que 1000, se le aplicará un 5% si no es socio, o 7% si
es socio. El programa mostrará la cantidad final.
Ejemplos: el usuario introduce 1000 y no , entonces el programa sacará
950.0 € . Si el usuario introduce 400 y si , el programa sacará 400.0 € .

let euros = parseInt(prompt("Euros: "));
let socio = parseInt(prompt("Socio: "));

if(euros>=1000) {
 if(socio == "no"){
 euros = euros * 0.95; #Descuento del 5%
 }else{
 euros = euros * 0.93; #Descuento del 7%
 }
}
alert(euros + "€");

Ej. 31: Copia y modifica el programa anterior para que haga lo mismo, con
la única diferencia de que, si la cantidad es negativa, muestre un error
(Error, cantidad negativa). En este caso, el usuario ni siquiera tendrá la
oportunidad de decir si es socio o no.

Este ejercicio es igual que el anterior, tan solo debemos rodear el programa
entero, a excepción de la instrucción input relativa a euros, con un if. Es decir, si
la variable euros es positiva, haz todo igual que antes, sino imprime el mensaje de

94

error. De nuevo, tenemos un caso en el que hacemos una o la otra (nunca las dos
o ninguna), lo que se traduce en un if con su else.

let euros = parseInt(prompt("Euros: "));
let socio = parseInt(prompt("Socio: "));

if(euros>=0){
 if(euros>=1000) {
 if(socio == "no"){
 euros = euros * 0.95; #Descuento del 5%
 }else{
 euros = euros * 0.93; #Descuento del 7%
 }
 }
}else{
 alert("Error, cantidad negativa");
}

alert(euros + "€");

Ej. 32: Escribe un programa que pida una cantidad en watios (W), y calcule
su equivalente en caballos de fuerza (CV). Sin embargo, si la cantidad es
negativa, deberá mostrar, en su lugar, el error ‘El número de watios debe
ser positivo’ .

Nota: Recuerda usar float() en vez de int() .

Una vez más, dos condiciones excluyentes, en la que se dará una o la otra (pero
no las dos o ninguna), por lo que usamos un if con su else.

let watios = parseFloat(prompt("Watios: "));
if(watios>=0){
 let cv = watios * 0.00134102; //Tb: cv = watios/745.7
 alert(cv + " W")
}else{ //Variable watiox es negativo Error→
 alert("El número de watios debe ser positivo");
}

Ej. 33: Escribe un programa en el que el usuario escriba una cadena y éste
diga si la cadena está entrecomillada con comillas simples (mostrará
‘Entrecomillada’) o no lo está (‘No entrecomillada’).

Pista: una cadena entrecomillada cumplirá que su primer carácter sea igual a
’ y también que su último carácter sea igual a ’ (utiiza subcadenas para

95

extraer el primer o el último carácter de la cadena, y usa el comparador ==

para compararlas con la cadena ’).

Este caso es como los anteriores, donde tenemos dos casos excluyentes y siempre
se da uno y el otro. La condición para que se ejecute una cosa
(‘Entrecomillada’) o la otra (‘No entrecomillada’) es, en términos
coloquiales, que “El primer carácter sea igual a ‘ Y que el último carácter sea igual
a ‘ .

let cad = input("Cadena: ")
let primer_char = cad[0:1] //Coge solo la posicion 0
let ultimo_char = cad[-1:] //Coge solo la posicion -1

if(primer_char=="'" and ultimo_char=="'"){
 alert("Entrecomillada");
}else{
 alert("No entrecomillada");
}

Ej. 34: Escribe otro programa que indique si una cadena está debidamente
encerrada por signos de exclamación o interrogación, en cuyo caso dirá ‘Si’)
o no lo está (‘No’).
Nota: si, por ejemplo, la cadena empezara por ¿ y terminase en ! , o si
empieza por ? , la respuesta debe ser ‘No’ .

Este ejercicio es exacto al anterior, solo que la condición es algo más complejo:
“Que el primer carácter sea igual a ¡ Y que el último carácter sea igual a ! O BIEN
que el primer carácter sea igual a ¿ Y que el último carácter sea igual a ? .

let cad = prompt("Cadena: ")
let primer_char = cad.substr(0,1); //Coge solo la posicion 0
let ultimo_char = cad.substr(-1,1); //Coge solo la posicion -1

if((primer_char=="¡" and ultimo_char=="!") ||
 (primer_char=="¿" and ultimo_char=="?")){
 alert("Si");
}else{
 alert("No");
}

Nota: el carácter \ en la línea del if se usa para indicar que la siguiente línea (la
que empieza por primer_char=”¿”... forma parte de la misma instrucción.

96

También es posible poner ambas líneas (desde el if hasta los dos puntos) todo en
una sola línea.

Ej. 35: Escribe un programa en el que el usuario introduzca una frase. El
programa indicará si la frase es ‘Exclamativa’ (estará encerrada entre signos
de exclamación) o ‘Interrogativa’ . Mostrará el mensaje ‘Otra’ , si no está
en los casos anteriores (incluido si la frase tiene errores como empezar sin
signos y terminar con un ! , o empiezar con signos de cierre ? , etcétera.
Pista: Controla los 2 primeros casos con sentencias if/elif, y la última (la del
error) con un else.

En este caso, tenemos 3 casos excluyentes, con lo que deberemos realizar un if
con los correspondientes elif. Además, como también se debe ejecutar siempre
uno de los casos (o es exclamativa, o interrogativa u otra), en el último caso se
usa un else.

let cad = prompt("Cadena: ");
let primer_char = cad[0:1] //Coge solo la posicion 0
let ultimo_char = cad[-1:] //Coge solo la posicion -1

if (primer_char=="¡" and ultimo_char=="!"){
 alert("Exclamativa");
}else if (primer_char=="¿" and ultimo_char=="?"){
 alert("Interrogativa");
}else:
 print("Otra");
}

Ej. 36: Una tienda vende, exclusivamente, ramos de flores, las cuales valen,
por defecto, 5€. Si el ramo posee una banda de felicitación, el precio sube 2 €.
Si dicha banda está en papel dorado, incrementa el precio en 1 € adicional
Escribe un programa en el que el se le pregunte al dependiente si el ramo
posee una banda y en el que el dependiente introducirá Si o No . En caso de
que se introduzca Si , el programa preguntará si es dorada o no, volviendo el
dependiente a indicar Si o No . El programa calculará y mostrará el precio
final del ramo.

Puesto que nos dan un valor por defecto, lo más fácil es definir una variable que,
inicialmente, almacene ese valor por defecto, y modificar su valor después.

let banda = prompt("¿Banda?: ")
let precio = 5;

97

if(banda=="Si"){
 precio = precio + 2;
 let dorada = prompt("¿Dorada?: ");
 if(dorada=="Si"){
 precio = precio + 1;
 }
}
alert(precio + " €");

98

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 4: 4:

ListasListas

1. Listas
Una lista es, simplemente, un conjunto de valores, uno detrás de otro. Por
ejemplo:

const frutas = ["pera", "manzana", "mandarina"];
document.getElementById('r').innerHTML = fruits.length; //3

En el ejemplo anterior, todos los elementos de la lista eran cadenas, pero,
realmente, una lista puede mezclar variables de todo tipo (cadenas, booleanos,
números de todo tipo, etcétera) en la forma que se desee:

const lista = ["pera", "3", "manzana"];
document.getElementById('r').innerHTML = lista; // pera, 3, manzana

También es posible utilizar el valor de variables previas para definir el valor de
las listas. En el siguiente ejemplo se usan dos variables y un literal para definir
una lista:

let mensaje = "solución";
let valor = 3;
const lista = [mensaje, valor, "entero"];
document.getElementById('r').innerHTML = lista; // solución, 3, entero

Ej. 1: Escribe un programa que pida 3 datos. El programa creará una lista
con esos tres datos. Luego, imprimirá esa lista.
Ejemplo: Si el usuario introduce hola , -3 y false , el programa creará e
imprimirá la lista [‘hola’, -3, false] .

Ej. 2: Escribe un programa que pida 3 datos. El programa creará una lista
con esos tres datos, pero en orden inverso. Luego, imprimirá esa lista.
Ejemplo: Si el usuario introduce 1.1 , false y -3 , el programa creará e
imprimirá la lista [-3, false, 1.1] .

Tamaño de una lista
Para saber el número de elementos que tiene una lista, se utiliza la función
length, de forma idéntica a como se hacía con las cadenas:

101

«lista».length Devuelve la longitud de ‘lista’.

const lista = ["hola", "que", "tal"];
document.getElementById('r').innerHTML = lista.length; //3

Añadir un elemento al final
«lista».push(«nuevoElem») Añade «nuevoElem» al final de la lista.

const lista = ["hola", "que", "tal"];
lista.push("¿cómo estás");
document.getElementById('r').innerHTML = lista;
 //["hola", "que", "tal", "¿cómo estás"];

Concatenar listas
Utilizando el operador suma, podemos concatenar listas, de forma análoga a
como lo hacíamos con las cadenas:

const arr1 = ["Celia", "Juan"]
const arr2 = ["Sofía", "Tomás", "Lola"];
const nombres = arr1.concat(arr2);
document.getElementById('r').innerHTML = nombres;
 //Imprime: ["Celi"a, "Juan", "Sofía", "Tomás", "Lola"]

Ej. 3: Escribe un programa que pida 2 datos, y en el que el programa creará
una lista con esos dos datos. Luego le concatenará un elemento con el valor
0.0 al inicio de la lista, y un elemento de tipo cadena y de valor ‘final’ al

final de la lista. Luego, imprimirá esa lista.
Ejemplo: Si el usuario introduce 3 y True , el programa creará e imprimirá
la lista [0.0, 3, True, ‘final’] .

Sublistas
Podemos quedarnos con solo parte de los valores de una lista, utilizando los
corchetes, de la misma forma que hacíamos con las cadenas.

102

«arr1».sllce(Inicio) Devuelve una lista desde el elemento indicado, incluyendo
éste.

«arr1».sllce(Inicio,fin) Devuelve una lista desde el elemento indicado,
incluyendo éste, hasta el segundo elemento indicado, excluyendo éste.

Los valores de inicio y fin pueden indicarse con números negativos, de forma
similar a como ocurre con las cadenas de caracteres, representando el -1 al último
elemento, el -2 al penúltimo, y así sucesivamente.

const lista = [];
lista.push("haba", "pera", 3.0, true);
document.getElementById('r1').innerHTML = lista.slice(1);
 //Imprime: [pera, 3.0, true]
document.getElementById('r2').innerHTML = lista.slice(1,3);
 //Imprime: [pera, 3.0]
document.getElementById('r3').innerHTML = lista.slice(2,20);
 //Imprime: [3.0, true]

Ej. 4: Escribe un programa que pida 5 números, y cree una lista con dichos
números. El programa mostrará las siguientes listas, una en cada línea (debes
usar valores negativos cuando necesites determinar las posiciones última,
penúltima o antepenúltima):
- Los dos primeros elementos
- Los dos últimos elementos
- El último y el penúltimo.

Ej. 5: Escribe un programa que pida 5 números, y cree una lista con dichos
números. El programa devolverá una lista con los 2 primeros y luego con los
dos últimos. Emplea slice para hacer las dos sublistas y concat para
encadenarlas.

Modificar elementos
Podemos modificar elementos de la lista:

const lista = ["haba", 3.0, "cereza"];
lista[2] = 5; //Modifica posición 2

103

document.getElementById('r').innerHTML = lista; //Imprime: haba, 3.0, 5

Ej. 6: Escribe un programa que pida 5 datos y que cree una lista con ellos.
Luego, modificará el 2º y el 3º, subtituyéndolos con los valores -1 y -2. Luego,
imprimirá la lista.

Borrar elementos
Puedes borrar elementos de una lista de las siguientes formas:

«lista».pop() Borra el último elemento de lista y lo devuelve.

Lista = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
let x = lista.pop();
document.getElementById('r1').innerHTML = lista
 //Imprime: 0,1,2,3,4,5,6,7,8
document.getElementById('r2').innerHTML = x; //Imprime: 9

«lista».splice(«indice», «numElem») Borra, a partir de «índice», un número de
elementos seguidos iguales a «numElem».

const array = ["a", "b", "c", "d", "e", "f"];
array.splice(1, 2);
document.getElementById('r').innerHTML = array; //Imprime: a,d,e,f

Ej. 7: Escribe un programa que pida 3 datos y cree una lista con ellos.
Pedirá también un cuarto valor, que será entre 0 y 2. El programa borrará
ese elemento de lista. Finalmente, imprimirá la lista.
Ejemplo: si el usuario introduce a , b , c y 1 , el programa imprimirá [a,
c] .

Elementos en una lista
Puedes comprobar la posición de un elemento en la una lista utilizando indexOf,
de forma similar a las cadenas:

104

«lista».indexOf(«elemento») Devuelve la posición de «elemento» en la «lista».
Si el elemento no está en la lista, se devolverá -1.

const array = ["a", "b", "c", "d", "e", "f"];
document.getElementById('r').innerHTML = array.indexOf("c"); //2
document.getElementById('r').innerHTML = array.indexOf("x"); //-1

Ej. 8: Escribe un programa que pida 3 elementos al usuario, creando una
lista de 3 elementos. Luego pedirá un cuarto número. Si dicho cuarto número
está en la lista, imprimirá el mensaje ‘Está en la lista’ , o en caso
contrario, imprimirá ’No está en la lista’ .

Ej. 9: Escribe un programa en el que el usuario introduzca un carácter (por
ejemplo a , 9 o #). El programa indicará si el carácter introducido es un
dígito, mostrando ‘Es un dígito’ o ‘No es un dígito’ .
Pista: Crea una lista de la forma: [“0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”,
“9”]. Luego, busca el carácter introducido en la lista.

Ej. 10: Escribe un programa igual al anterior, pero que imprima si si el
carácter es una letra mayúscula (‘Letra mayúscula’), letra minúscula
(‘Letra minúscula’), un dígito (‘Dígito’) u otro carácter (‘Otro’).
Pista: tendrás que diseñar 3 listas para comparar el carácter con cada lista. Si
no es ninguna de las anteriores, automáticamente será del tipo ‘Otro’ .
Puedes usar una estrctura “if – else if – else if – else”.

105

2. Ejercicios adicionales

Ej. 11: Crea un programa en el que el usuario introduzca una palabra en
singular y en minúsculas. Si la palabra termina en l , o , n , e , r , s , ma

o ta , el programa dirá ’probable género masculino’ . En cambio, si la
palabra termina en a , d , ón , z , is , ie o umbre , el probrama dirá
’probable género femenino’ . Si no termina en ninguno de los anteriores,

mostrará ‘Incierto’ .
Realiza el ejercicio usando dos listas, una en la que almacenarás los valores
del probable género masculino, y otra para los valores del probable género
femenino.

Ej. 12: Escribe un programa que pida al usuario 3 cadenas. El programa
creará y mostrará una lista con solo los elementos no vacíos. Haz el programa
de dos formas, usando push y sin usar push.
Ejemplo: Si el usuario introduce hola , una cadena vacía y ¿qué tal? ,
entonces el resultado será ['hola', '¿qué tal?'] .
Pista: para hacer el ejercicio sin push, empieza definiendo una variable
llamada lista_final , que contenga una lista vacía ([]). Luego, tras el
primer input() , comprueba si la cadena introducida es distinta de la cadena
vacía (""), en cuyo caso, crea una lista con dicha cadena y concaténala a
lista_final . Luego repite el proceso 3 veces. Finalmente, imprime
lista_final .

106

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 5: 5:

BuclesBucles

1. Bucles while

Bucle while básico
Los bucles while repiten una serie de instrucciones (el cuerpo del bucle)
mientras se cumpla una condición, la cual es definida tras la palabra reservada
while . En el siguiente programa se usa un bucle para imprimir dos números,

empezando por el 2:

let i = 2; //Indices usan nombres como: i,j,k
let rs = "";
while (i < 4){ //Al llegar a 5, no ejecuta más el bucle
 rs = rs + i +","; //Añade i al resultado
 i = i + 1; //Incrementa i en 1
}
rs = rs +"FIN";
document.getElementById('rstl').innerHTML = resultado; //Imprime: 2,3,FIN

A continuación se muestran todos los pasos del programa anterior. En el paso ❶ 

se define i , inicialmente con el valor de 2 . Tras ello, en el paso ❷, se
comprueba si i es menor que cuatro. Como ello es así, el cuerpo del bucle (las
instrucciones de ❸ print y ❹ i=i+1), se ejecutan, imprimiendo en pantalla un
2 e incrementando la variable i en uno.

❶ i:?→ 2 ❷ i: 2 ❸ i:2 2,

let i = 2;
let rs = "";

while (i<4){
 rs = rs + i+",";
 i = i + 1;
}
rs = rs +"FIN";

let i = 2;
let rs = "";

while (i<4){ //2<4
 rs = rs + i+",";
 i = i + 1;
}
rs = rs +"FIN";

let i = 2;
let rs = "";

while (i<4){
 rs = rs + i+",";
 i = i + 1;
}
rs = rs +"FIN";

❹ i:2→ 3 2, ❺ i:3 2, ❻ i:3 2,3,

let i = 2;
let rs = "";

while (i<4){
 rs = rs + i+",";
 i = i + 1;

let i = 2;
let rs = "";

while (i<4){ //3<4
 rs = rs + i+",";
 i = i + 1;

let i = 2;
let rs = "";

while (i<4){
 rs = rs + i+",";
 i = i + 1;

109

}
rs = rs +"FIN";

}
rs = rs +"FIN";

}
rs = rs +"FIN";

❼ i:3→ 4 2,3, ❽ i: 4 2,3,  ❾ i:3 2,3,FIN

let i = 2;
let rs = "";

while (i<4){
 rs = rs + i+",";
 i = i + 1;
}
rs = rs +"FIN";

let i = 2;
let rs = "";

while (i<4){ //4 4≮
 rs = rs + i+",";
 i = i + 1;
}
rs = rs +"FIN";

let i = 2;
let rs = "";

while (i<4){
 rs = rs + i+",";
 i = i + 1;
}
rs = rs + "FIN";

Cuando el cuerpo del bucle se ha ejecutado, volvemos a comprobar la condición
(paso ❺), aunque esta vez la variable i ya vale 3 . Como la condición sigue
siendo cierta, volvemos a ejecutar el cuerpo del bucle (los pasos ❻ y ❼),
imprimiendo en pantalla un 3 e incrementando, de nuevo,la variable contador en
uno, quedando con un valor de 4 .

Finalmente, volvemos a comprobar la condición del bucle (paso ❽). Como i ya
no es menor que 4 , ya no ejecutamos más el cuerpo del bucle, siguiendo
adelante con el paso ❾.

Ej. 1: Escribe un programa que pregunte al usuario un número. El
programa imprimirá una cadena con tantas a's indicó el usuario.
Ejemplo: si el usuario introduce un 3 , el programa devolverá aaa .

Ej. 2: Escribe un programa que pregunte al usuario un número. El
programa creará y luego imprimirá una cadena que empezará por 0 y
terminará en el número indicado.
Ejemplo: si el usuario introduce un 3 , el programa devolverá '0123' .

Contador inverso
En ocasiones es útil o interesante realizar el programa con un contador que se va
decrementando:

let lanzamientos = 10; // Número total de lanzamientos
let caras = 0; // Contador de cuántas veces sale cara

110

while (lanzamientos > 0) {
 // Si Math.random() < 0.5 será cara, y >= 0.5 cruz
 caras += Math.random() < 0.5; // Suma 1 si es cara
 lanzamientos--; // Queda un lanzamiento menos.
}

document.getElementById('r').innerHTML = "Nº Caras: " + caras);

Ej. 3: Escribe un programa que pregunte al usuario un número. El
programa creará y luego imprimirá una cadena que empezará por el número y
terminará en 0 .
Ejemplo: si el usuario introduce un 3 , el programa devolverá '3210' .

Ej. 4: Implementa un programa que sume, usando un bucle, los números 1 a
n, siendo n un número especificado por el usuario.
Por ejemplo, si el usuario introduce 3 , el programa mostrará 6 (1+2+3);

Ej. 5: Implementa un programa que calcule el número de Fibonacci
especificado por el usuario, que será mayor que 1. El núḿero de Fibonnacci
se calcula:
Fibonacci(0) = 0
Fibonacci(1) = 1
Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2);
Pista: Tendrás que usar 2 variables que almacenen Fibonacci(n-1) y
Fibonacci(n), que irás actualizando en cada iteración del bucle.

Ej. 6: Calcula el factorial de un número proporcionado por el usuario. El de
un número n es igual a 1 * 2 * 3 * … * n.

Ej. 7: El usuario introducirá 2 valores que estarán ambos entre 0 y 1. El
programa generará números aleatorios hasta obtener un valor entre el
intervalo descrito por el usuario. Escribirá los números generados separados
por comas.
Nota: Math.random() genera valores aleatorios entre 0 y 1.

111

Ejemplo: si el usuario introduce 0.2 y 0.3 , el programa generará números
aleatorios hasta que uno de ellos esté entre 0.2 y 0.3 .

Iterar cadenas
Aunque es más típico hacerlo con un bucle for (que veremos más adelante), un
bucle while puede usarse para iterar sobre una cadena.

let cadena = "01234567"; //Cadena de longitud 8
let i = 0; //variables índices suelen usar nombres como i,j,k
let longitud = cadena.length;
let resultado = "";
while(i<longitud){
 let c = cadena[i] //c almacena el carácter i-ésimo
 resultado = resultado + c + ",";
 i = i + 1;
}
document.getElementById('rstl').innerHTML = resultado;
 //Imprime: 1,2,3,4,5,6,7,

En el ejemplo anterior, la variable contador i se irá incrementando desde 0

hasta tomar un valor igual a la variable longitud (en este caso, 8). Mientras i

sea menor que 8 , el cuerpo del bucle se repetirá, pero, una vez que i valga 8 ,
la condición i<longitud ya no será cierta, por lo que se terminará el bucle.

Observa que, para obtener el carácter que haya en la posición i-ésima de la
cadena, usamos la expresión c = cadena[i] , de forma que, si por ejemplo, i

vale 0 , entonces a c se le asigna el valor “0” .

Nota: c es de tipo de cadena (aunque almacene un cero, dicho cero es un
carácter), mientras que i es de tipo entero.

Ej. 8: Crea un programa que tome una cadena de texto ingresada por el
usuario, la invierta y la muestre. Se recomienda usar un contador que vaya
decrementando.

Ej. 9: Crea un programa que tome una cadena de texto ingresada por el
usuario, y muestre otra con cada letra en mayúsculas y minúsculas.

112

Por ejemplo, si el usuario inserta abCd , el programa devolverá aAbBcCdD .
Para poner un carácter o cadena en mayúsculas o minúsculas, puedes usar
«cad».toUperCase() y «cad».toLowerCase().

Ej.9b: Crea un programa que tome una cadena de texto ingresada por el
usuario y cuente cuántas veces aparece cada vocal (a, e, i, o, u). Muestra el
resultado indicando cuántas veces aparece cada vocal.
Nota: no uses listas, para comprobar si la letra actual es una vocasl, usa un
condicional con una condición de Si letra es igual a “a” o letra es igual a “b”
…

Ej.9c: Crea un programa que tome una cadena de texto ingresada por el
usuario y genere otra cadena en la que cada carácter sea reemplazado por el
siguiente en el alfabeto. Si el carácter es "z" o "Z", deberá reemplazarse por "a"
o "A", respectivamente.

Otras condiciones de salida
En el siguiente ejemplo realizamos una condición de salida algo más compleja
para evitar seguir recorriendo la cadena cuando hayamos encontrado la letra que
buscamos.

let cad = "abcÑdeÑf"; //adena de longitud 8
let i = 0; //Indices usan nombres como: i,j,k
let c = "";
let resultado;
while (c!="Ñ" && i<cad.length){
 c = cad[i]
 i = i + 1;
}
i = i - 1; //En el bucle, después de poner c a 'Ñ', incrementamos i en 1,
 // y aquí deshacemos ese último incremento.
if(c=="Ñ") resultado = i;
else resultado = "no encontrado";
document.getElementById('rstl').innerHTML = resultado;
//Imprime la posición de la primera "Ñ" en cad: 3

113

Ej. 10: Escribe un programa que, con un bucle while, vaya calculando la
suma de los números de 1 hasta “n”. Cuando dicha suma sea justo mayor que
un número proporcionado por el usuario, el programa devolverá el “n” que lo
cumple.

Condicional dentro del bucle
El anterior ejemplo puede realizarse con un condicional dentro del bucle, algo
bastante habitual en los bucles. Aquí usamos una variable boolena para salir una
vez hayamos encontrado la Ñ :

let cad = "abcÑdeÑf"; //adena de longitud 8
let i = 0; //Indices usan nombres como: i,j,k
let encontrado = false;
let resultado = "no encontrado";

while (!encontrado && i<cad.length){
 if(cad[i] == "Ñ"){
 encontrado = true;
 resultado = i;
 }
 i = i + 1;
}

document.getElementById('rstl').innerHTML = resultado;
 //Imprime la posición de la primera "Ñ" en cad: 3

En el código anterior, definimos una variable contador, llamada i , que valdrá
inicialmente 0 . Luego, en cada iteración del bucle, examinaremos el carácter i-
ésimo de la cadena llamada cad . Por ejemplo, en la primera iteración del bucle
i vale 0 , y lo primero que hacemos es comprobar cad[i] == “Ñ” , es decir, si

el primer carácter de la cad es igual a una Ñ . Como no es así (el primer
carácter vale a), nos saltamos el cuerpo del condicional, y seguimos con la
siguiente instrucción: i= i + 1 , por lo que ahora i vale ahora 1 , y volvemos a
la cabecera del bucle (la línea que empieza por while). Como la condición aún
se cumple, volvemos a ejecutar el cuerpo del bucle, que tampoco entrará dentro
del condicional, pero que si incrementará i .

Tras un par de iteraciones más, cuando i valga 3 , volvemos a ejecutar el bucle.
En esta ocasión, cad[i] == Ñ , si que será cierto, por lo esta vez si que entramos

114

en el bucle, y la variable encontrado pasará a valer True . También
imprimiremos el valor de i , que es la posición en la que hemos encontrado la
Ñ .

Finalmente, salimos del condicional, ejecutando la instrucción i = i + 1 , para
volver, una vez más, a la cabecera del bucle. Pero, en esta ocasiónz, !

encontrado es false , por lo que la condición ya no se cumple más, y hemos
terminado con el bucle. Seguimos, pues, con las instrucciones que siguen al
bucle, en este caso, la que imprime el fin de programa. Observa que el cuerpo del
bucle no se ha ejecutado con i valiendo 8 .

Ej. 11: El usuario escribirá una cadena en un campo de texto y, en otro
campo de texto, un carácter. El programa calculará cuantas veces aparece el
carácter en la cadena.

Ej. 12: Escribe un programa que muestre la posición de todos los caracteres
Ñ (no solo el primero). Utiliza el código del ejemplo de base.

Pista: No es necesario aquí usar la variable encontrado . El condicional irá
añadiendo, a un mensaje, los índices donde encuentre las Ñ .

Ej. 13: Escribe un programa en que el usuario introduzca una cadena en un
campo de texto, y un carácter en otro campo de texto. El programa contará
cuantas veces aparece el carácter en la cadena.

Ej. 14: Comprueba si un número proporcionado por el usuario es primo.
Un número “n” es primo solo si NO es divisible por todos y cada uno de los
números entre 2 y n-1.
Pista: el número n NO es divisible entre x si el resto de dividir n entre x no es
igual a 0).

Ej. 15: Crea un programa que vaya recorriendo, con un blucle, cada uno de
los caracteres de una cadena proporcionada al usuario.
El bucle terminará justo cuando encuentre una Ñ . Mostrará la posición en la
que se ha quedado.
Nota: este programa NO usa indexOf .

115

Ej. 16: Crea un programa parecido al anterior, pero el bucle parará cuando
encuentre una Ñ o una ñ .
Nota: este programa NO usa indexOf .

Ej. 17: Crea un programa parecido al anterior, pero que encuentre el primer
dígito en una cadena. En este caso, si será necesario el uso de indexOf .

Ej. 18: Crea un programa que vaya mostrando, en sucesivas líneas de un
textarea, los últimos caracteres de una cadena proporcionada por el usuario.
Por ejemplo, si la cadena proporcionada por el usuario es abcd , el resultado
será:
abcd

bcd

cd

d

Nota: Deberás usar substr dentro del bucle para generar las sucesivas cadenas.
Nota: para realizar este ejercicio, necesitarás usar un textarea, en vez de una
etiqueta, por ejemplo:
 <textarea rows="10" cols="50"> </textarea>
Para insertar un salto de línea en el textarea, se añade \n .

Ej. 19: Crea un programa similar al anterior, pero que vaya mostrando los
primeros caracteres, en vez de los últimos.

Ej. 20: Crea un programa similar a los anteriores, pero que vaya mostrando
los caracteres centrales. La cadena introducida por el usuario tendrá un
número par de caracteres.
Por ejemplo, si la cadena proporcionada por el usuario es abcd , el resultado
será:
abcdef

bcde

cd

116

Nota: El bucle tendrá una variable que irá desde 0 hasta la mitad de la
longitud (o el redondeo de la mitad hacia arriba, según el caso).

117

2. Bucles for
Los bucles for iteran una lista. Definen una variable auxiliar (comúnmente
llamada e), la cual va valiendo, en cada iteración del bucle, uno (y solo uno) de
los índices de la lista. Pore ejemplo, en el siguiente programa, definimos una lista
de enteros. Luego, definimos un bucle for, el cual define una variable e, que va
valiendo, en cada iteración, los índices de la lista (0, 1, y finalmente, 2):

const ls = [0, 2, 7]; //lista de enteros
let rs = "";

for(const i in ls) { //variable ‘e’ controlada por el for
 rs += ls[i] + ","; //Imprime un elemento de la lista
}
rs += "FIN";

A continuación se muestran los pasos del programa. En primer lugar, se necesita
una lista, en este caso de enteros (paso ❶). Luego, en el paso ❷, se evalúa el for,
asignando a la variable i el primer valor de la lista ls (un 0). Luego, en el
paso ❸, se imprime ese valor.
❶ e:? ❷ e:0 ❸ e:0 0,

const ls=[0,2,7];
let rs = "";
for(const i in ls){
 rs += ls[i]+",";
}
rs += "FIN";

cons nums=[0,2,7];
let rs = "";
for(const i in ls){
 rs += ls[i]+",";
}
rs += "FIN";

const nums=[0,2,7];
let rs = "";
for(const i in ls){
 rs += ls[i]+",";
}
rs += "FIN";

❹ e:2 0, ❺ e:2 0,2, ❻ e:7 0,2,

const nums=[0,2,7];
let rs = "";
for(const i in ls){
 rs += ls[i]+",";
}
rs += "FIN";

const nums=[0,2,7];
let rs = "";
for(const i in ls){
 rs += ls[i]+",";
}
rs += "FIN";

const nums=[0,2,7];
let rs = "";
for(const i in ls){
 rs += ls[i]+",";
}
rs += "FIN";

❼ e:7 0,2,7, ❽ e:? 0,2,7,FIN

const nums=[0,2,7];
let rs = "";
for(const i in ls){
 rs += ls[i]+",";

const nums=[0,2,7];
let rs = "";
for(const i in ls){
 rs += ls[i]+",";

118

}
rs += "FIN";

}
rs += "FIN";

De igual forma se realizan los pasos ❹ y ❺, pero esta vez e valdrá 2 . Y una
última vez, los pasos ❻ y ❼, con i valiendo 7 . Tras ello, el programa, que ha
iterado el bucle 3 veces (las mismas veces que elementos tenía la lista ls), pasa
a ejecutar las siguientes instrucciones, en esta caso .❽

Cuidado: En un bucle for, no debe modificarse la lista sobre la que se está
iterando en el cuerpo del bucle (en el caso anterior, no debe modificarse la lista
ls dentro del cuerpo del bucle). Tampoco es necesaria, a priori, ninguna

variable contador.

En el siguiente ejemplo, la variable de bucle e va tomando el valor de cada uno
de los valores de lista nums en cada una de las iteraciones del bucle.

let nums = [3, 4, -1, 2, -3];
let num_neg = 0;
for(const i in nums){ //variable ‘e’ controlada por el for
 if(nums[i]<0){ //Si e es menor que 0
 num_neg ++; //Incrementa num_neg
 }
}
document.getElementById('rstl').innerHTML = num_neg; //2

En cada iteración del bucle, se comprueba, mediante un condicional, si el valor de
e es negativo, En caso de serlo, se incrementa la variable num_neg en uno. De
esta forma, al finalizar el bucle, obtenemos la cantidad de números negativos en
la lista.

Ej. 21: Escribe un programa que pida al usuario tres cadenas, y cree una
lista de 3 elementos con ellas. El programa informará si al menos una de ellas
es igual a la cadena vacía ("").

Ej. 22: Escribe un programa que pida al usuario 5 números, y cree una lista
de 5 elementos con ellos. El programa imprimirá la cantidad de números
positivos introducidos, la cantidad de ceros, y la cantidad de números
negativos.

119

Bucles for y cadenas
Recuerda que una cadena es, realmente, una lista de caracteres (realmente, es una
lista de cadenas de longitud 1). Por tanto, podemos usar el bucle for para iterar
sobre una cadena. Por ejemplo, el siguiente programa:

let cadena = "027"; //Cadena

for (i in cadena){ //variable ‘c’ controlada por el for
 rs += cadena[i] + ","; //Imprime un elemento de la lista
}
rs += "FIN";

En este caso, el bucle for comprueba, en cada iteración del bucle, si el carácter es
igual a una a. En tal caso, aumentará la variable num_de_a .

Let cadena = "hasiudasuiasd";
let num_de_a = 0;
for (i in cadena){
 if(cadena[i] == "a"){
 num_de_a = num_de_a + 1;
 }
}
document.getElementById('rstl').innerHTML = num_de_a; //3

Las comprobaciones del carácter pueden ser más complejas. Por ejemplo, en el
siguiente ejemplo, se cuenta el número de símbolos que hay en la cadena.

let cadena = "hola8&que|tal_";
let simbolos = ["8", "_", "#", "&", "%", "|"];
num_simbolos = 0;
for(i in cadena){
 if(simbolos.indexOf(cadena[i]) != -1){
 num_simbolos = num_simbolos + 1;
 }
}
document.getElementById('rstl').innerHTML = num_simbolos; //4

Cuidado: observa que los elementos de la lista simbolos están todos encerrados
entre comillas, es decir, son cadenas. Esto es así porque la variable c es de tipo
cadena, y c in simbolos solo devolverá True (entrando en el cuerpo del
condicional) solo si existe en simbolos una cadena igual a c . Por ejemplo, si

120

quitamos las comillas al 8 de la lita (quedando 8 en vez de “8”), el resultado
del programa será 3 .

Ej. 23: Escribe un programa que cuente el número de letras minúsculas que
hay en una cadena introducida por el usuario.

Ej. 24: Escribe un programa en el que el usuario introduzca una cadena. El
programa imprimirá la misma cadena, pero sustituyendo los dígitos por
guiones.
Ejemplo: Si el usuario introduce ab34cd5 , el resultado del programa será ab
—cd- .

Pista: Recorre la cadena con un bucle for. Para cada iteración, si es un dígito,
imprime un guion. En caso contrario, imprime el carácter original.

Ej. 25: Escribe un programa que cuente el número de caracteres que no son
dígitos que hay en una cadena introducida por el usuario.
Pista: resta, a la longitud total de la cadena, el número de dígitos que hay en
dicha cadena.

Ej. 26: Escribe un programa que pida una cadena al usuario. El programa
imprimirá la cadena, con una coma tras cada carácter. El programa NO
imprimirá coma tras el último carácter.
Ejemplo: Si el usuario introduce abcd, el programa devolverá a,b,c,d .

121

3. For tradicional
El lenguaje JS también posee el for tradicional. Este tipo de bucles es similar al
while, solo que posee, entre los paréntesis, 3 instrucciones (en vez de una)
separadas por dos punto y coma.

let cad = "012";
let mensaje = "";
for (let i=0; i<cad.length; i++){
 mensaje = mensaje + cad[i] + ",";
}
document.getElementById('rstl').innerHTML = mensaje; //0,1,2,

El primer elemento, a la izquierda, es una instrucción que se realiza una sola vez
al iniciar el bucle. El último elemento, a la derecha, es una instrucción que se
realiza al final de cada iteración. El elemento central tiene la misma
funcionalidad que en el while.

let cad = "012";
let mensaje = "";
let i = 0;
for (i<cad.length){
 mensaje = mensaje + cad[i] + ",";
 i++;
}
document.getElementById('rstl').innerHTML = mensaje; //0,1,2,

Escribe un programa que pida una cadena al usuario. El programa imprimirá
cada posición de la cadena y el carácter en dicha posición.
Ejemplo: Si el usuario introduce abc , el programa devolverá:
0 a

1 b

2 c

Pista: crea un bucle cuya variable vaya valiendo desde 0 hasta la longitud de
la cadena menos 1. Usa esa variable para construir cada línea a imprimir.
Nota: para realizar este ejercicio, necesitarás usar un textarea, en vez de una
etiqueta, por ejemplo:
 <textarea name="nombreTextarea" rows="10" cols="50">

122

 </textarea>
Para insertar un salto de línea en el textarea, se añade \n .

Ej. 27: Escribe un programa que use el for antes descrito, en el que el
usuario proporcione un número. El programa imprimirá un mensaje que irá
desde 1 hasta el número indicado por el usuario. Por ejemplo, si el usaurio
introduce 3 , el programa imprimirá 123 .

Ej. 28: Realiza un programa en el que el usuario introduzca un número. El
programa irá mostrando, en un textarea, los cuadrados de los números
enteros, empezando por 1, hasta el número indicado por el usuario.
Por ejemplo, si el usuario introduce 3 , el programa mostrará:
El cuadrado de 1 es 1.

El cuadrado de 2 es 4.

El cuadrado de 3 es 9.

Ej. 29: Realiza un programa en el que el usuario introduzca un número. El
programa irá mostrando, en un textarea, los cuadrados de los números
enteros, empezando por 1, hasta que el cuadrado sea mayor que el número
indicado por el usuario.
Por ejemplo, si el usuario introduce 8 , el programa mostrará:
El cuadrado de 1 es 1.

El cuadrado de 2 es 4.

123

4. Bucles anidados
Como sucedía con los condicionales, también es posible anidar bucles. En este
caso, vamos a exponer un programa que imprime un rango de números (desde 0
hasta 2), pero lo hace, no una, sino dos veces:

for(let i=0; i<2; i++){ //i es controlada por este for
 for(let j=0; j<3; j++){ //j es controlada por este for
 mensaje += j;
}
document.write(mensaje); //Imprime: 012012

En el paso ❶, el bucle exterior establece i a 0 . En este momento, j aún no
está definida. En ❷ si que se define j a 0 . Ahora, en ❸, se imprime por
pantallael valor de j .
❶ i:0 j:? ❷ i:0 j:0 

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

❸ i:0 j:0 0 ❹ i:0 j:1 0

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

❹ i:0 j:1 0 ❺ i:0 j:1 01

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

❻ i:0 j:2 01 ❼ i:0 j:2 012

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

❽ i:1 j:? 012 i:1 j:0 012 ❾

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

124

❿ i:1 j:0 0120 ❿ i:1 j:0 0120

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

⓬ i:1 j:1 01201 ⓬ i:1 j:1 01201

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

⓮ i:1 j:2 012012

for(let i=0; i<2; i++)
 for(let j=0; j<3; j++)
 mensaje += j;

Tras ello, en el paso ❹, volvemos a la cabecera del bucle interno (el de la j),
pues aún no lo hemos completado, cambiando el valor de j a 1 y, en ❺,
volvemos a imprimir el valor de j . Luego, realizamos una iteración más del
bucle interno en ❻ y ❼.

Completado lo anterior, puesto que el cuerpo del bucle exterior (el de la i), no
posee más instrucciones que el bucle interno (el de la j), el paso ❽ vuelve a la
cabecera del bucle exterior, incrementando el valor de i en uno, hasta un valor
de 1 . Lo siguiente es realizar una nueva iteración del cuerpo del bucle exterior.

Dado que el cuerpo del bucle exterior es, justamente, ejecutar el bucle interior, en
esta segunda iteración volvemos a realizar todos y cada uno de los pasos para
completar las 3 iteraciones que nos impone el bucle interior. Así pues, volvemos
a ejecutar ❾ y ❿ (primera iteración con j igual a 0); ⓫ y ⓬ (segunda
iteración con j igual a 1); y ⓭ y ⓮ (tercera iteración con j igual a 2). Tras
ello, como no hay más instrucciones, el programa termina.

Cuidado: Las variables controladas por los bucles for anidados (i , j), no deben
coincidir entre si (por ejemplo, no se debe poner dos bucles anidados usando,
ambos, la variable i).

El siguiente programa ejecuta un bucle exterior (el de i), 3 veces (con i

valiendo 0, 1 y 2). En cada una de estas iteraciones, se ejecuta el bucle interno
(el de j), que ejecuta el print 5 veces (con j valiendo 0, 1, 2, 3 y 4).

125

Observa también que la otra instrucción mensaje += "
"; , la que si
implementa salto, se ejecuta tan solo 3 veces, pues está incluida en el bucle
exterior, pero no en el interior.

for(let i=0; i<3; i++){ //i es controlada por este for
 for(let j=0; j<5; j++){ //j es controlada por este for
 mensaje += (i+j);
 }
 mensaje += "
";
}

document.write(mensaje); //Imprime: 01234
 // 12345
 // 23456

Observa también que la instrucción ejecutada por el bucle más interno usa tanto
i como j , lo cual es perfectamente posible.

Ej. 30: Escribe un programa que pida al usuario un número. El programa
imprimirá un cuadrado relleno de asteriscos:
Ejemplo: si el usuario introduce 2 , el programa imprimirá:
**

**

Ej. 31: Escribe un programa que pida el número de filas y el número de
columnas. El programa imprimirá un rectángulo relleno de asteriscos:
Ejemplo: si el usuario introduce 3 y 4 , el programa imprimirá:

Ej. 32: Escribe un programa que pida al usuario un número. El programa
imprimirá un marco hueco de asteriscos:
Ejemplo: si el usuario introduce 3 , el programa imprimirá:

* *

Pista: Realiza el ejercicio como los anteriores, pero imprime el asterisco tan
solo si cualquiera de las variables de los bucles valen igual a 0 o igual al
número introducido menos uno.

126

Ej. 33: Escribe un programa que pida al usuario un número. El programa
imprimirá esa cantidad de filas, la primera con un 0, la segunda, con un 1, etc.
Ejemplo: si el usuario introduce 3 , el programa imprimirá:
0

01

012

Pista: Realiza el ejercicio como los anteriores, pero (si la variable del bucle
externo es i) el segundo bucle (el interno), irá desde 1 hasta i.

Escribe un programa que pida al usuario un número. El programa imprimirá
esa misma cantidad de filas. La primera línea imprimirá tantos números
consecutivos como el número introducido, empezando por cero. La segunda
imprimirá uno menos, y así sucesivamente.
Ejemplo: si el usuario introduce 3 , el programa imprimirá:
012

01

0

Pista: Realiza el ejercicio como los anteriores, pero (si la variable del bucle
externo es i) el segundo bucle (el interno), irá desde i hasta el número
introducido.

127

5. Ejercicios adicionales
Ej. 34: Escribe un programa en el que el usuario escriba un número. Si el
número es negativo, el programa volverá a preguntar al usuario un número,
hasta que éste introduzca uno positivo. Finalmente, imprimirá ese positivo
número introducido.

Ej. 35: Escribe un programa en el que el usuario escriba la parte real y la
parte imaginaria de un número complejo (a través de dos instrucciones input).
Si el número no está en el primer cuadrante (tanto parte real como parte
compleja mayores o iguales a 0), el programa volverá a pedir el número
complejo. Finalmente, imprimirá el número complejo introducido.

Ej. 36: Escribe un programa que pida al usuario una cadena y, sin usar
subcadenas, imprima dicha cadena al revés.
Ejemplo: si el usuario introduce abcd , el programa devolverá ’dcba’ .
Pista: usa una variable índice i que, mediante un bucle, vaya valiendo desde
longitud-1 hasta 0. En cada iteración, se imprimirá el caracter i-ésimo.

Ej. 37: Escribe un programa que cuente el número de dígitos que hay en
una cadena introducida por el usuario.

Ej. 38: Escribe un programa que pida al usuario dos números, siendo el
primero menor que el último. El programa imprimirá una línea empezando en
el primer número y finalizando en el último
Ejemplo: Si el usuario introduce 3 y 6 , el programa imprimirá 3456 .
Nota: recuerda que la función range(ini:fin) empieza por ini , pero no
incluye fin .

Ej. 39: Escribe un programa que pida al usuario una cadena y dos números.
Sin usar subcadenas, el programa imprimirá el trozo de cadena entre las dos
posiciones indicadas.
Ejemplo: si el usuario introduce 0123456 , y luego 3 y 5 , el programa
devolverá ‘345’ ,

128

Ej. 40: Escribe un programa que pida al usuario 3 cadenas. El programa,
usando un bucle, imprimirá la longitud de cada cadena.

Ej. 41: Escribe un programa que pida al usuario un número. El programa
pedirá luego un número de cadenas igual al número indicado. Finalmente,
imprimirá todas la cadenas concatenadas.
Ejemplo: si el usuario introduce un 2 , entonces el programa le pedirá 2
cadenas. Si, entonces, introduce ¡hola y mundo! , el programa devolverá
‘¡hola mundo!’ .

Pista: crea una variable resultado , que contenga una cadena vacía. En cada
iteración del bucle, el programa pedirá una cadena (mediante un input), y
concatenará dicha cadena resultado .

Ej. 42: Escribe un programa en el que, mediante un bucle y usando solo
sumas, multiplique dos números introducidos por el usuario.
Ejemplo: si el usuario introduce 3 y 4, el programa devolverá 12.
Pista: crea una variable, llamada resultado , que empiece valiendo 0.
Luego, crea un bucle que se repetirá tantas veces como indica el primer
operando. En cada iteración, suma a resultado el valor del segundo
operando. Por ejemplo, con 3 y 4 :
 Bucle se repite 3 veces, sumando 4 en cada iteración: 4 + 4 + 4 = 12

Ej. 43: Escribe un programa que muestre las tablas de multiplicar, del 1 al
10. Cada tabla se mostrará en una línea, y cada tabla separará los valores con
coma y espacio:
1x1=1, 1x2=2, ...
2x1=2, 2x2=4, ...

...
Nota: este ejercicio no necesita ninguna instrucción input.

Ej. 44: Escribe un programa que pida al usuario un número mayor que 1, y
compruebe si es primo. Para saber si un número es primo, dividimos el
número indicado entre cada uno los números que vayan desde 2 hasta
número-1. Todas esas divisiones deben tener un resto distinto de 0:

129

Pista: crea un bucle con una variable i que vaya desde 2 hasta numero-1 .
Para cada valor de i , comprueba que numero%i == 0. Si existe, aunque sea
un valor de i en que ello suceda, entonces numero no es primo.
Nota (para comprobar resultados): los números primos entre 2 y 20 son 2,
3, 5, 7, 11, 13, 17 y 19.

Ej. 45: Escribe un programa que pregunte al usuario un número entero
mayor que 0 , y que calcule el factorial de dicho número. Para calcular el
factorial de un número, debes multiplicar todos los números que vayan desde
1 hasta dicho número;
 n! = 1 * 2 * 3 * … * (n-1) * n
Ejemplo: si el número introducido es 3 , el resultado será 1*2*3 = ‘6’ .
Pista: crea una variable resultado que inicialmente valga 1. Luego, crea un
bucle que use una variable i que vaya desde 1 hasta el número introducido y
que, en cada iteración, multiplique resultado con i .

Ej. 46: Escribe un programa que pida un números y que indique si es primo
o no. Luego, repetirá el proceso dos veces más.
Pista: usa el código del ej_105, pero encapsula todo con un bucle que se
ejecute 3 veces.

Ej. 47: Escribe un programa que pida 3 números mayores que 0. Luego, los
introducirá en una lista. Finalmente, imprimirá cada número introducido y su
factorial
Pista: Pide los 3 números y crea la lista como has hecho en otros ejercicios.
Luego, rodea el código realizado en ej_106 con un bucle que itere la lista (tan
solo tendrás que hacer un cambio menor en el print del ej_106).

Ej. 48: Escribe un programa en el que el usuario introduzca 2 números,
siendo el primero menor que el segundo. Luego, el programa imprimirá desde
el primer número hasta el segundo, pero saltando de dos en dos.
Ejemplo: si el usuario introduce 3 y 8 , el programa imprimirá ‘357’ .
Pista: crea un while con una variable i que empiece valiendo el primer
número. Luego, en cada iteración del bucle, incrementa i, no en 1, sino en 2.

130

Ej. 49: Escribe un programa que pida 10 números, y luego los almacene en
una lista. Luego, usando un bucle, el programa imprimirá las posiciones
pares, es decir, las posiciones 0, la 2, 4, 6 y 8. (el primer elemento, el tercero,
etcétera.
Nota: observa que, en una lista de 10 números, la “posición 10” no existe
(sería el elemento undécimo).
Pista: usa, como en el ejercicio anterior, un bucle cuya variable se incremente
de dos en dos.

Ej. 50: Escribe un programa que pida 10 números, y luego los almacene en
una lista. Luego, usando bucles, el programa creará una lista con las las
posiciones pares, y otra lista con las posiciones impares. Finalmente,
imprimirá esas dos listas.

Ej. 51: Escribe un programa en el que el usuario escriba 3 números y los
introduzca en una lista. Para cada uno de ellos, indicará si es par o no.

Escribe un programa en el el usuario escriba un número. El programa
mostrará todos los números entre 1 y el número indicado que sean divisibles
entre 3.
Nota: numero es divisible entre 3 si si solo sí numero%3==0 .

Ej. 52: Escribe un programa en el que el usuario escriba dos números. El
programa mostrará todos los números entre 1 y el primer número indicado
que sean divisibles entre el segundo número.
Nota: num1 es divisible entre num2 si si solo sí num1%num2==0 .

Ej. 53: Crea un programa que vaya recorriendo una cadena proporcionada
por el usuario. Para cada letra, el programa contará y mostrará, en un
textarea, el número de veces que dicha letra aparece en la cadena, Por
ejemplo, si el usuario introduce aula , el resultado será:
a: 2 vez(veces).

u: 1 vez(veces).

131

l: 1 vez(veces).

a: 2 vez(veces).

Ej. 54: Crea un programa que vaya recorriendo una cadena proporcionada
por el usuario. El programa mostrará los caracteres repetido. Por ejemplo, si
el usuario introduce ordenador , el resultado será: ord .

Ej. 55: Crea un programa que vaya recorriendo una cadena proporcionada
por el usuario. El programa mostrará las posiciones y los caracteres que estén
seguidos por la misma letra. Por ejemplo, si la entrada es uuhhh , el
resultado será:
u: Posición 0.

h: Posición 2.

h: Posición 3.

Ej. 56: Crea un programa que vaya recorriendo una cadena proporcionada
por el usuario. Para cada letra, el programa contará y mostrará, en un
textarea, el número de veces que dicha letra aparece en la cadena. Sin
embargo, no mostrará varias veces la misma letra. Por ejemplo, si el usuario
introduce aula , el resultado será:
a: 2 vez(veces).

u: 1 vez(veces).

l: 1 vez(veces).

Pista: a la hora de comprobar si una letra tiene repetidas o no, comprueba
antes, con un bucle, si la letra no ha aparecido antes.

132

6. Ejercicios avanzados

Ej. 57: Crea un programa en la que el usuario introduzca los valores de alto
y ancho de un rectángulo, los cuales serán ambos impares y mayores que 4. El
programa dibujará el rectángulo de bordes doble (usa los caracteres: ╔ ╗ ╚ ╝

) y, en su interior, dibujará un rectángulo de borde simple (usa y ═ ║ ┌ ┐ └ ┘
). Finalmente, en el centro habrá un asterisco, estando el resto del interior─ │

vacío. Intenta hacer el código lo más compacto y eficiente posible.
Ejemplo: para un 9 y 5: ╔═══════╗
 ║┌─────┐║
 ║│ * │║
 ║└─────┘║
 ╚═══════╝
Tras realizar el ejercicio, prueba a hacerlo más compacto y eficiente,
empelando "╔" + "═".repeat(…) + … y similares.

Ej. 58: Crea un programa en la que el usuario introduzca dos cadenas, una
de origen y una de búsqueda. El programa devolverá la posición de la cadena
de búsqueda dentro de la cadena de origen. En caso de no encontrarla,
devolverá -1.
Ejemplo: si se introduce abcdef y cd , el programa devolverá 2 .
Realiza el ejercicio para que sea lo más eficiente posible, de forma que se salga
de los bucles lo antes posible.

Ej. 59: Realiza un ejercicio cree los 100 primeros números primos. Para
comprobar si un número es primo. basta con comprobar que el número no sea
divisible con cualquier número menor que él.
La primera optimización sería saber que basta con comprobar que no es
divisible por ningún primo menor que él (puedes emplear una lista para ir
almacenando los números primos).
Puedes optimizar aún más el algoritmo teniendo en cuenta que para
comprobar si un número es primo tan solo es necesario comprobar si es

133

divisible con los números primos menores o iguales que la raíz cuadrada del
número que se está comprobando.
Ejemplo: construyendo la lista de números primos se llega hasta el el número
17, que debemos comprobar si es primo o no para añadirlo a la lista o no. En
este momento tendremos en la lista los primeros números primos menores a
17 ([2, 3, 5, 7, 11, 13]). Comprobamos si 17 es divisible entre 2, entre 3, pero
no es necesario comprobar más, porque 5*5 es mayor que 17.
Extra: ¿Por qué es posible hacer cada una de las optimizaciones mencionadas?

Ej. 60: Realiza un programa en el que se muestre (usa document.write o
similar), en una tabla HTML, la posición final de la partida inmortal de
Annand(1). LA posición está codificada en el siguiente vector: [a1, b1,♖ ♗

c1, d1, e1, f1, g1, h1, a2, b2, c2, d2, e2, f2, g2,♖ ♕ ♔ ♖ ♙ ♙ ♙ ♙ ♙ ♙ ♙ ♙ ♙
h2, a3, c3, d3, e3, h3, f4, g4, b5, f5, g5, h5, e6,♙ ♙ ♞ ♕ ♝ ♙ ♙ ♞ ♟ ♟ ♟ ♛ ♟
a7, b7, g7, c8, g8].♟ ♟♝ ♜ ♚

Se deberá mostrar el color de fondo de las casillas, y el tablero debe estar
estandarizado, con la fila 1 abajo, y la fila 8 arriba.
(1) Levon Aronian con blancas contra Viswanathan Anand en la ronda 4 del Tata Steel Chess
Tournament (2013)

134

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 6: 6:

FuncionesFunciones

1. Definición
Para definir una función, basta con usar la palabra reservada def, seguida por el
nombre de la función que deseamos definir. Tras esa primera línea, con la
sangría apropiada, pondremos una o varias instrucciones, que serán la que
compondrán el cuerpo de la función. En el siguiente ejemplo, definimos dos
funciones:

function miFuncion() {
 document.getElementById('rstl').innerHTML = "hola";
}

function miOtraFuncion() {
 document.getElementById('rstl').innerHTML = "hola";
 document.getElementById('rstl').innerHTML += "mundo";
}

Es importante señalar que, en un programa, lo que se define en una función, por
defecto no se ejecuta. Por ejemplo, el siguiente programa:

<script>

 function miFuncion() {
 //Este código NO se ejecuta por ser parte de una función
 document.getElementById('rstl').innerHTML = "hola";
 }

 //Código normal: SI se ejecuta.
 document.getElementById('rstl').innerHTML = "Adiós";

</script>
//Imprime: Adiós

Al ejecutar el anterior programa, no se ejecuta la función: solo se define. Es decir,
por ahora, la función no es usada en ningún momento.

137

2. Invocar una función
Una vez definida, una función puede invocarse en cualquier parte. Para ello,
simplemente tenemos que poner el nombre de la función seguido de paréntesis de
apertura y cierre. Cuando se invoca una función, lo que sucede es que se ejecutan
las instrucciones del cuerpo de la función:

function miFuncion() {
 document.getElementById('rstl').innerHTML += "hola!";
}

document.getElementById('rstl').innerHTML = "111";
miFuncion();
miFuncion();

//Imprime: 111hola!hola!

Observa que una función puede invocarse tantas veces como se desee y, en cada
invocación, se ejecutarán todas las instrucciones del cuerpo de la función.

Ej. 1: Escribe un programa que defina una función, la cual imprima,
únicamente, una a y una b seguidas (ab) El programa, invocando una
función tres veces seguidas, imprimirá lo siguiente: ababab .

Escribe un programa que defina una función, la cual imprima, únicamente,
dos aes seguidas (aa). El programa, invocando la función dos veces seguidas,
deberá imprimirá lo siguiente:
aa-aa

Pista: será necesario intercalar una instrucción entre las dos invocaciones a la
función.

Lugares de invocación
Una función puede invocarse desde cualquier sitio en el que pueda situarse una
instrucción. Por ejemplo, puede formar parte del cuerpo de un bucle o un
condicional. También puede invocarse una función en el cuerpo de otra función.

function miFuncion() {
 document.getElementById('rstl').innerHTML += "hola!";
}

138

document.getElementById('rstl').innerHTML = "Inicio";
for(let i=0; i<3; i++){
 miFuncion();

//Se imprime: Iniciohola!hola!hola!

Ej. 2: Escribe un programa que contenga una función, la cual imprima
¡Hola! , sin salto de línea. Usando un bucle, haz que el programa imprima 5

holas seguidos: ’¡Hola!¡Hola!¡Hola!¡Hola!¡Hola!’ .

Ej. 3: Escribe un programa que contenga una función, la cual imprima
quién , y otra que imprima es (también sin salto de línea). El programa

deberá imprimir, invocando las funciones anteriores: quién es quien .

Ej. 4: Escribe un programa que contenga una función, la cual imprima 123 ,
y otra que imprima abc . El programa deberá imprimir, usando un bucle que
invoque ambas funciones, lo siguiene: 123abc123abc123abc .
Pista: solo es necesario un bucle for, no siendo necesarios bucles anidados.

139

3. Argumentos
Una función puede definir argumentos. El número y nombre de éstos argumentos
se define en la primera línea de la función (la que contiene la palabra reservada
def), entre los paréntesis.

Al invocar una función que tenga definidos argumentos, debemos suministras un
número de argumentos igual al que la función define. Por ejempo, en la función
imprimeTodo del programa siguiente, se definen 3 argumentos. Por tanto, al

invocarla, también se necesitan 3 argumentos.

Además, en el cuerpo de la función podemos usar los argumentos como si fueran
una variable, su valor dependerá del valor proporcionado en los argumentos:

function imprimeTodo(txtini, txtmed, txtfin) {
 document.getElementById('rstl').innerHTML = "txtini";
 document.getElementById('rstl').innerHTML += "txtmed";
 document.getElementById('rstl').innerHTML += "txtfin";
}

imprimeTodo(“Hola ”, “¿qué tal ”, “Adiós”)

//Imprime: Hola ¿qué tal? Adiós

En el cuerpo de una función se pueden realizar todo tipo de instrucciones. Otro
ejemplo de función sería:

function imprimeSuma(op1, op2){
 let suma = op1 + op2;
 document.getElementById('rstl').innerHTML =
 op1 + " + " + op2 + " = " + suma;
}

imprimeSuma(9,3) //Imprime: 9 + 3 = 12
imprimeSuma(4,5) //Imprime: 4 + 7 = 9

Observa que las instrucciones en el cuerpo de una función se comportan de igual
forma que el resto. Por ejemplo, en el código siguiente estamos intentando sumar
una cadena con un número, por lo que dará error:

function imprimeSuma(op1, op2){
 let suma = op1 + op2; //Aquí, suma vale otra cosa.
 document.getElementById('rstl').innerHTML =

140

 op1 + " + " + op2 + " = " + suma;
}

imprime_suma(“9”,3) //Error

Ej. 5: Escribe un programa que pida dos números. El programa empleará
los dos números como argumento de una función llamada suma (que tendrá 2
argumentos). La función sumará los dos argumentos e imprimirá el resultado.
Ejemplo: Si el usuario introduce 3 y 4 , el programa llamará a la función con
esos dos números, la cual imprimirá 7 .

Ej. 6: Escribe un programa que contenga una función que posea dos
argumentos e imprima los operandos y su multiplicación (por ejemplo, con
argumentos 3 y 4 , imprimirá 3x4=12).

Ej. 7: Escribe otro programa que pedirá un número entre 1 y 10 y luego,
invocando la función, la cual contendrá un bucle, imprimirá, en un textarea, la
tabla de multiplicar de ese número.

Argumentos indeterminados
Dentro de una función, la variable arguments devuelve un array con todos los
valores de los argumentos que se le pasen a la función.

function mostrarArgumentos() {
 for (let i = 0; i < arguments.length; i++) {
 console.log(`Argumento ${i}: ${arguments[i]}`);
 }
}

141

4. Return
Una función puede contener una o varias cláusulas return. Dicha cláusula
devuelve el valor especificado a la derecha de la cláusula return. Ese valor puede
ser usado en la instrucción que invoca a la función.

En el siguiente programa invocamos a la función sumar, con los argumentos 2 y
3. En ese momento, se ejecuta la función que, fundameentalmente, suma dos dos
argumentos y devuelve la suma, que almacenamos en la variable suma.

function sumar(op1, op2){
 return op1 + op2;
}

let suma = sumar(2,3);
document.getElementById('rstl').innerHTML = suma; //Imprime: 5

Cuando se invoca una función, no es imprescindible usar el valor devuelto por la
función. La función seguirá siendo ejecutada normalmente.

Function imprimeYDevuelveSuma(op1, op2){
 let suma = op1 + op2;
 document.getElementById('rstl').innerHTML =
 op1 + " + " + op2 + " = " + suma;
 return suma;
}

imprimeYDevuelveSuma(2,3) //Llama a la función, pero NO
 //almacena ni usa el resultado.

//Imprime: 2 + 3 = 5

Tras ejecutar return, la función termina
Una vez que se ejecuta una cláusula return, la función deja de ejecutarse. Por
tanto, todo código escrito tras dicha instrucción es código que nunca se ejecuta.
En el siguiente ejemplo, el print de la función nunca se ejecuta, pues siempre se
va a ejecutar un return antes que él.

function imprimeSuma(op1, op2){
 return op1 + op2; //Aquí, suma vale otra cosa.
 document.getElementById('rstl').innerHTML = op1 + op2;

142

 //Esta última línea nunca se ejecuta
}

Observa que, cuando un return está dentro de un condicional o un bucle, es
posible que se ejecute o no. En caso de ejecutarse, se termina la función pero, si
no es ejecutado (porque la condición del condicional o bucle no se cumple),
entonces el código posterior tiene posibilidad de ejecutarse. Es lo que sucede en
el código siguiente:

function menor(op1, op2){
 if(op1<op2){
 return op1;
 } else {
 return op2;
 }
}

document.getElementById('rstl').innerHTML = menor(8,3); //3

Ej. 8: Escribe una función de tres argumentos, en el que la función sume los
tres argumentos y devuelva la suma. Emplea la función para sumar 3 números
proporcionados por el usuario y mostrarlos en una etiqueta.

Ej. 9: Escribe una función que concatene dos argumentos pasados por
parámetro. Emplea la función para concatenar dos cadenas proporcionadas
por el usuario y mostrarlas en una etiqueta.

Ej. 10: Práctica general con HTML
Escribe un HTML (versión HTML 5) completo en el que haya 2 campos de
texto, una etiqueta y un botón. Cuando se pulse el botón, el contenido de los
dos campos de texto se sumará y el resultado se pondrá en la etiqueta. Si, al
pulsar el botón, alguno de los campos está vacío, o los dos, se deberá indicar
en la etiqueta, en vez de realizar la suma.

143

5. Funciones anónimas
En JS, también podemos definir funciones anónimas. Para ello, se utiliza también
la palabra reservada function , pero no se incluye nombre de función.

const suma = function(a, b) {
 return a + b;
};

console.log(suma(1,2));

Es posible invocar directamente a una función anónima empleando paréntesis:

(function(nombre) {
 console.log("Hola, " + nombre + "!");
})("Álvaro");

var resultado = (function(op1, op2) {
 return op1 + op2;
})(3, 4);
console.log(resultado);

Ej. 11: Define una función anónima que devuelva el número de letras que
suman todas las cadenas pasadas por argumento. Tendrás que hacer un bucle
y usar arguments .

Función flecha
La función flecha es, tan solo, una forma más corta de escribir funciones
anónimas en JavaScript. Se omite la palabra reservada function antes de los
argumentos y, además, se pone un igual y un mayor (imulando una flecha) entre
los argumentos y el cuerpo de la función:

const suma = (a, b) => {
 return a + b;
};

console.log(suma2(2, 3)); // 5

144

const suma2 = (a, b) => {
 return a + b;
}(2,3);

console.log(suma2); // 5

Ej. 12: Define las funciones flecha necesarias para realizar la operación
(1+2) * 5. Tendrás que combinar ambas expresiones.

La función flecha también tiene una versión abreviada, que es con el cuerpo de la
función como una sola línea, y sin usar corchetes ni return:

const suma = (a, b) => a + b;
console.log(suma(2, 3)); // 5

const suma2 = ((a, b) => a + b)(2,3);
console.log(suma2); // 5

Ej. 13: Define una función flecha, en formato abreviado, que true si el
número pasado por argumento es par, o false si es impar.

Ej. 14: Define una función flecha, en formato abreviado, que devuelva el
mayor de dos números pasados por argumento. Puedes usar el operador
ternario para hacerlo. Haz luego otra para el mayor de tres números.

145

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 7: 7:

TypescriptTypescript

Referencia:

https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html

Curso y ejercicios:

https://www.learn-ts.org/

Proyecto

Crea una mini aplicación de contactos, que mostrará los contactos actuales y
podrá crear nuevos contactos.

models/Contact.ts El interface “Contact” (nombre y teléfono y, opcionalmente,
descripción).

models/Contacts.ts La clase que poseerá, fundamentalmente, un array de
“Contact” y métodos para (1) añadir contacto, y (2) devolver
contactos, que devolverá una COPIA del array de contactos.
Inicialmente, siempre habrá un contacto, llamado
“Emergencias”, con número de teléfono “911”, sin
descripción.

ui/render.ts Mostrará la lista de contactos, más un formulario (con dos
campos de texto y un botón), destinado a añadir un
contacto.
Render solo exporta una función con un argumento de
Contact[], que usa para construir la lista.
Cuando no haya descripción, se mostrará “sin descripción”.
Usa operador || o ?? para ello.
Para iterar el array de contactos, y para iterar los campos de
un contacto, emplea for...in y for...of.

main.ts El main creará una variable de tipo Contacs, llamará a
render y creará una función que conectará al botón del
formulario para que se añada un nuevo contacto.

147

https://www.learn-ts.org/
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html

PPARTEARTE III: III:

ProgramaciónProgramación
avanzadaavanzada

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 1: 1:

ExpresionesExpresiones
regularesregulares

1. Busquedas literales
Las expresiones regulares tratan de buscar una expresión en un texto. Lo más
sencillo que podemos hacer es buscar, por ejemplo, una palabra concreta dentro
de un texto. En JS esto se hace con la función match :

const texto = "—¿Qué tengo que hacer para entrar? —volvió a preguntar " +
 "Alicia alzando la voz.\n" +
 "—Pero ¿TIENES REALMENTE QUE ENTRRAR? —dijo el lacayo—. " +
 "Esto es lo primero que hay que aclarar, sabes.\n";

const regex = /que/g;
const coincidencias = texto.match(regex); //['que', 'que', 'que']
const posiciones = [...texto.matchAll(regex)].map(match => match.index);
 //[12, 152, 160]

En el ejemplo anterior, tenemos un texto en el cual vamos a buscar una expresión
regular (comúnmente llamada regex). En JS, y en otros muchos lenguajes, estas
expresiones regulares están encerradas entre símbolos de barra (/), y seguidas
por alguna opción como una g , una i u otras. En el ejemplo anterior estamos
buscando la palabra que .

Observa que el primer Qué no coincide, esto es porque la primera es mayúscula.
Aún en caso de que no lo fuera, tampoco coincidiría, ya que ese primer Qué lleva
tilde. El segundo QUE , tampoco entra porque no coincide por estar en
mayúsculas.

Nota: es posible estudiar los patrones de una forma más sencilla con página web
sobre patrones, tales como https://regex101.com/.

Ej. 1: En el texto anterior, haz la búsqueda de es .

Caracteres especiales
Algunos caracteres tienen una función especial en regex, por lo que deben ser
escapados para poder ser buscados.

• . Cualquier carácter (excepto salto de línea).
• ̂ y $ Inicio y fin de línea. La ^ , también significa la negación en clases.

151

https://regex101.com/

• $ Fin de línea.

• * , + , ? , { y } Caracteres usados para especificar repeticiones

• \ Al usarse para escapar caracteres, para buscar el propio carácter de barra
invertida deberemos usar \\ .

Además de loa anterior, algunos caracteres no imprimibles pueden ser
especificados con la barra invertida:

• \n Salto de línea (newline).
• \r Retorno de carro (carriage return).

• \t Tabulación horizontal (tab).

• \f Avance de página (form feed).

• \v Tabulación vertical (vertical tab).

Ej. 2: En el texto anterior, busca los caracteres de punto. Busca luego
todaslas coincidencias de un punto seguido de un salto de línea.

Modificadores
Las letras del patrón de búsqueda (regex) que hay tras la segunda barra son
modificadores que afectan a todo el patrón de búsqueda. Algunos de ellos son:

• i (insensitive): Hace la búsqueda insensible a mayúsculas y minúsculas (case-
insensitive). Ejemplo: /abc/i encuentra abc , ABC , AbC , etcétera.

• m (multiline): Permite que el inicio (representado por ^) y final (representado
por $) de la expresión regular coincidan con el comienzo y final de cada línea,
no solo del texto completo. Ejemplo: /^abc/m coincide con abc al principio
de cada línea.

• s (dotall): Hace que el punto (.) coincida también con saltos de línea (\n),
que normalmente no lo haría. Ejemplo: /a.b/s coincidiría con a\nb .

152

• u (unicode): Habilita el soporte completo de caracteres Unicode, permitiendo el
uso de caracteres extendidos y combinados correctamente. Ejemplo:
/\p{Letter}/u encuentra cualquier letra Unicode.

Ej. 3: En el texto anterior, haz la búsqueda de que de forma insensible a
mayúsculas.

1

153

2. Clases de caracteres
En vez de realizar una búsqueda literal, carácter por carácter, es posible
especificar clases de caracteres, usando corchetes . Una clase de caracteres
puede satisfacerse con cualquier carácter especificado entre los corchetes. Por
ejemplo, Ejemplo: [abc] coincidirá con a , b o c .

El siguiente ejemplo encuentra las ocurrencias de el o él en el texto. Observa
que la primera ocurrencia está dentro de una palabra mayor, pero aún así es
detectada, pero no encuentra El , porque la e está en mayúscula.

const texto = "Y ella estaba comenzando a sentirse muy cansada de estar" +
 "sentada junto a su hermano en la orilla del río, y de no" +
 "tener nada que hacer. Una o dos veces había mirado el " +
 "libro que su hermano estaba leyendo, pero no tenía " +
 "imágenes ni conversaciones en él, '¿De qué sirve un " +
 "libro sin imágenes ni conversaciones?' pensó.\n";
 "El hermano intuyó sus pensamientos y dijo: Hermana, un ...";

const regex = /[eé]l/g;
const coincidencias = texto.match(regex); //['el', 'el', 'él']

Una clase de caracteres siempre representará a un único carácter.

Ej. 4: Haz que las palabras de el que sean inicio de frase (por lo que la E

estará en mayúscula) también sean incluidas en la búsqueda. Busca luego
todas las ocurrencias de el , incluyendo la mayúscula y la tilde en la e .

Ej. 5: Busca en el texto las ocurrencias de hermano o hermana .
E

Ej. 6: Encuentra todas coincidencias con una vocal minúscula.
Ejemplo: el texto El murciélago contendría 5 correspondencias, (u , i , é ,
a y o), cada una separada de las demás.

Ej. 7: Crea un patrón que detecte todos los nombres de fichero formados
por un dígito (caracteres 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ó 9) seguido por
.log .

154

Nota: para especificar un punto con carácter de búsqueda, hay que poner, en
el patrón de búsqueda \. , en vez de . , debido a que el punto tiene un
significado especial que veremos más adelante. Así, por ejemplo, para buscar,
por ejemplo, 1.1 , debemos realizar una búsqueda como 1\.1 .

Rangos
También es posible determinar un rango dentro de los corchetes, siendo los más
haituales [A-Z] (todas la letras mayúsculas), [A-Za-z] (todas las letras) y [0-
9] para todos los números. Pore ejmplo, el siguiente ejemplo encuentra todos

los números de un texto:

const texto = "En 1789, la Revolución Francesa comenzó a cambiar el " +
 "curso de la historia. El 14 de julio, la toma de la " +
 "Bastilla fue un evento crucial. También en en '89, la " +
 "población de París era de unas 600,000 personas. A " +
 "mediados de 1793, la convención nacional proclamó la" +
 "República, mientras que en 1804 Napoleón Bonaparte se " +
 "coronaba emperador de Francia.";

const regex = /[0-9]/g;
const coincidencias = texto.match(regex); //['1','7','8','9','1','4','8'.
 //'9','6','0','0','0','0','0','1','7','9','3','1','8','0','4']

Ej. 8: Busca todos los años expresados de forma completa del texto anterior
(1789 , 1793 y 1804 , pero no 14). Un año está formado por un dígito (un
carácter de 0 a 9) seguido por otro dígito, luego otro y, finalmente un cuarto
dígito.

Negación
Los corchetes también permiten especificar lo contrario a lo que se indica. En el
siguiente ejemplo se busca una fecha que no esté seguida por una coma o bien las
que no estén seguidas de una coma ni de un punto.

const texto = "La Revolución Francesa comenzó a cambiar el curso de la" +
 "historia en 1789. El 14 de julio, la toma de la " +
 "Bastilla fue un evento crucial. También en en '89, la " +

155

 "población de París era de unas 600,000 personas. A " +
 "mediados de 1793, la convención nacional proclamó la" +
 "República, mientras que en 1804 Napoleón Bonaparte se " +
 "coronaba emperador de Francia.";

const regex = /[0-9][0-9][0-9][0-9][^,]/g;
const coincidencias = texto.match(regex); //['1789','1804']
const regex2 = /[0-9][0-9][0-9][0-9][^,.]/g;
const coincidencias2 = texto.match(regex2); //[,'1804']

Ej. 9: Busca las expresiones en el texto del ejemplo que correspondan a un
espacio, una e y luego otra cosa que no sea n ni l .

Ej. 10: Crea un patrón que corresponda a rutas formadas por una barra
inicial, luego un directorio llamado swap , otra barra, y luego un nombre de
fichero formado por cualquier carácter que no sea la barra, finalizado por la
extensión .txt por (por ejmplo: /swap/h.txt).

Ej. 11: Crea un patrón igual que el anterior, solo que el carácter que
conforma el nombre del fichero no es ni una barra ni un espacio ni un dígito.

Clases predefinidas
Algunos de los rangos anteriores pueden expresarse con clases predefinidas:

• . Significa cualquier carácter. Según las opciones de la búsqueda, puede incluir
los saltos de línea y similares o no.

• \d coincide con cualquier dígito, equivalente a [0-9] , y \D Coincide con
cualquier carácter que no sea un dígito.

• \w coincide con cualquier carácter alfanumérico (letras, números y guion bajo).
Equivalente a [a-zA-Z0-9_] , y \W coincide con cualquier carácter que no sea
alfanumérico.

• \s coincide con cualquier carácter de espacio en blanco (espacio, tabulación,
salto de línea, retorno de carro, etcétera, y \S coincide con cualquier carácter
que no sea un espacio en blanco.

156

Algunos de estos caracteres en blanco son el \r (retorno de carro, carácter
ASCII 13), el \n (salto de línea, carácter ASCII 10), el \t (tabulación
horizontal, carácter ASCII 9), y el \f (avance de página, carácter ASCII 12).

• \p{} coincide con cualquier carácter que pertenezca a una categoría Unicode
específica. Por ejemplo: \p{L} coincide con cualquier letra

Por su parte \P{} coincide con cualquier carácter que no sea de la categoría
especificada. Por ejemplo: \P{L} coincide con cualquier carácter que no sea
una letra.

const texto = "Ajustó el pequeño cuadrante de su máquina.\n" +
 "—Voy a avanzar exactamente 5 años en el futuro —dijo—. " +
 "Será un salto breve para probar que los mecanismos " +
 "funcionan correctamente. Según mis cálculos, el reloj " +
 "interno de la máquina marcará 1.825 días cuando regrese.\n" +
 "El grupo de espectadores, formado por 7 personas, observó " +
 "con atención. El Viajero encendió la máquina, y un " +
 "zumbido llenó la sala.\n" +
 "—¡Espera! —gritó uno de ellos—. ¿Y si avanzas 10 años " +
 "en lugar de 5?\n" +
 "El Viajero sonrió.\n";

const regex = /\d/g;
const coincidencias = texto.match(regex);
 //['5', '1', '8', '2', '5', '7', '1', '0', '5']
const regex2 = /\p{L}/gu;
const coincidencias2 = texto.match(regex2);
 //['A', 'j', 'u', 's', 't', 'ó', 'e', 'l' ...]
const regex3 = /\P{L}/gu;
const coincidencias3 = texto.match(regex3);
 //[' ', ' ', ' ', ' ', ' ', ' ', '.', '—', ' ', ' ', ' ', ' ', '5' ...]

Ej. 12: Del texto del ejemplo, obtén los números completos (5 , 1.825 , 7 ,
10 y 5).

Ej. 13: Crea un patrón que coincida con cualquier número expresado con
puntos para miles, millones, miles de millones, etcétera.
Ejemplos: 10 , 1.456 , 14.332.333 .

157

Ej. 14: Crea un patrón que corresponda con todas las palabras del texto
(Ajustó , el , pequeño , etc.). que no sean número (no se incluirá 5 ni otros
números). Asegúrate de que usar búsqueda unicode.

Ej. 15: Crea un patrón que corresponda con todas las palabras del texto,
incluyendo los símbolos de puntuación pegados a ellas. Por ejemplo, algunas
de ellas serán —Voy o —dijo—. . Los saltos de línea y los espacios no se
consideran símbolos de puntuación.

Ej. 16: Crea un patrón que coincida con un nombre de fichero que contenga
uno o más dígitos seguidos.

158

3. Multiplicadores
Los multiplicadores afectan a lo que haya justo delante, de forma que, para
coincidir, un texto debe tener cero, una o varias veces un patrón.

• * equivale a cero o más repeticiones. Por ejemplo, Ejemplo a* coincide con la
vacía a , aa , aaa , etc. Otro ejemplo, [ab]* coincide con cualquier cadena
que posea cualquier número de a y b (aaaabaaa , bababa , bbbb , etc.).

• ? equivale a cero o una repetición (hace que el elemento anterior sea opcional).
Por ejemplo: colou?r coincide con color y con colour .

• + equivale a una o más repeticiones, es decir, requiere al menos una ocurrencia
para coincidir. Por ejemplo, a+ coincide con a , aa , aaa , etcétera, pero no
con la cadena vacía.

• {n} equivale a, exactamente n repeticiones. Por ejemplo, a{3} coincide con
aaa (exactamente 3 veces a). Otro ejemplo: [ab]{2} coincide con aa , ab ,
ba y bb .

• {n,} equivale a n o más repeticiones. Por ejemplo, a{2,} coincide con aa ,
aaa , aaaa , aaaaa , etcétera.

• {n,m}: Coincide con entre n y m repeticiones, inclusive. Por ejemplo: a{2,4}

coincide únicamente con aa , aaa y aaaa .

Estos multiplicadores son, por defecto, “greedy” (avariciosos), por lo que
intentarán abarcar todos los caracteres posibles en su expresión regular. Por
ejemplo, en un texto como bbaaaabb , el patrón a{2,} , coincidirá con la
expresión aaaa, en vez de coincidir dos veces, una con aa y otra con la segunda
aa .

Ej. 17: Busca todos los años del texto sobre la revolución Francesa, las
fechas de año (1789, 89, 1793 y 1804), empleando esta vez, multiplicadores.

159

Ej. 18: Crea un patrón que se corresponda con cualquier número entre 0 y
99999.

Ej. 19: Crea un patrón que se corresponda con cualquier texto en español
de entre 2 y cinco letras minúsculas seguido por un espacio (considera que las
palabras pueden tener letras entre a y z , vocales con tildes o la última vocal
con diéresis (ü), todo lo anterior mayúscula y minúscula.

Ej. 20: Crea un patrón que coincida con cualquier número que vaya desde
100 hasta 4999.
Pista: haz un patrón con una barra para contemplar dos posibilidades, una con
un número de 100 a 999 y otra desde 1000 hasta 4999.

Ej. 21: Crea un patrón que coincida con cualquier dirección de correo
electrónico válida. El patrón debe coincidir con lo siguiente:
1) Un nombre de usuario que contenga entre 1 y 20 caracteres, que pueden ser
letras (mayúsculas o minúsculas), números, puntos (.), guiones bajos (_) y
guiones (-).
2) El símbolo @.
3) Un dominio de entre 2 y 10 caracteres alfanuméricos (puede contener letras
y números).
4) Un punto (.) seguido de una extensión que sea entre 2 y 4 letras.

Ej. 22: Ej. 23: Crea un patrón que coincida con cualquier número decimal
positivo de al menos 1 dígito antes del punto decimal y hasta 4 dígitos
después del punto.

160

4. Grupos de captura
Los grupos de captura tienen varios usos, uno de ellos es el poder aplicarles a un
grupo de caracteres un multiplicador, o bien realizar varias posibilidades, con el
operador barra.

const regex2 = /(la)+/g;

El ejemplo anterior aplica el multiplicador + a todo el grupo de captura,
pudiendo encontrar textos como la , lala , lalala , etcétera.

Ej. 23: Crea una regla que corresponda a ficheros cuyo nombre esté
formado por letra seguido de dígito, y así sucesivamente, terminando luego en
.txt .

Ejemplo: coincidirá con a0b1c8.txt y con z9.txt , pero no con 0a1b.txt .

Ej. 24: Extiende lo anterior para que los números puedan ser, en vez de
dígitos, números de hasta 2 cifras.
Ejemplo: coincidirá con a0b12.txt y con z90.txt , pero no con a123.txt .

Operador Barra
Otra opción para buscar alternativas a la búsqueda es usar la barra. Por ejemplo,
lo siguiente busca

const texto = "Y ella estaba comenzando a sentirse muy cansada de estar" +
 "sentada junto a su hermano en la orilla del río, y de no" +
 "tener nada que hacer. Una o dos veces había mirado el " +
 "libro que su hermano estaba leyendo, pero no tenía " +
 "imágenes ni conversaciones en él, '¿De qué sirve un " +
 "libro sin imágenes ni conversaciones?' pensó.\n";
 "El hermano intuyó sus pensamientos y dijo: Hermana, un ...";

const regex2 = /Una|Un/g;
const coincidencias2 = texto.match(regex); //['Una']
const regex2 = /[Uu]n|[Uu]na/g;
const coincidencias2 = texto.match(regex2); //['un', 'Un', 'un']

161

Ej. 25: busca todas las ocurrencias de el , ella y sus variantes (tildes y
mayúsculas). Siempre que exista en el texto, da preferencia a encontrar
ella .

Ej. 26: Busca todas las ocurrencias de con y sin . Hazlo teniendo en
cuenta que alguno de ellos podría estar al principio de un frase.

Ej. 27: Busca todos los años del texto sobre la revolución Francesa, las
fechas de año (1789, 89, 1793 y 1804). Un año está formado, o bien por 4
dígitos, o bien por un apóstrofo seguido por 2 dígitos.

Ej. 28: Crea una expresión que corresponda con todas las onomatopeyas de
risa simples (ja , je , ji , jo y ju): ¡ja! , ¡jajaja! , ¡jeje! ,
¡jajejijoju! , etcétera.

Pista: Aparte de las exclamaciones que son siempre igual, necesitarás un
grupo de captura con varias opciones, y luego un multiplicador.

Ej. 29: Extiende lo anterior para que la primera letra de la risa sea en
mayúscula. Añade también la posibilidad de juas .

162

5. Marcas
Las marcas identifican partes del texto sobre elque se realiza la búsqueda:

• ̂ representa el inicio de línea o cadena.

• $ representa elfin de línea o cadena.

• \b coincide con una frontera de palabra (un punto donde una palabra
comienza o termina, como el espacio entre dos palabras).

• \B Coincide con cualquier posición que no sea una frontera de palabra.

const texto = "Ajustó el pequeño cuadrante de su máquina.\n" +
 "—Voy a avanzar exactamente 5 años en el futuro —dijo—. " +
 "Será un salto breve para probar que los mecanismos " +
 "funcionan correctamente. Según mis cálculos, el reloj " +
 "interno de la máquina marcará 1.825 días cuando regrese.\n" +
 "El grupo de espectadores, formado por 7 personas, observó " +
 "con atención. El Viajero encendió la máquina, y un " +
 "zumbido llenó la sala.\n" +
 "—¡Espera! —gritó uno de ellos—. ¿Y si avanzas 10 años " +
 "en lugar de 5?\n" +
 "El Viajero sonrió.\n";

const regex = /\b[Ee]n\b/gu;
const coincidencias = texto.match(regex); //['en', 'en']

Las marcas representan puntos específicos del texto, pero no son obligatorias. Por
ejemplo, si tenemos el texto ¡Hola que tal! , y queremos buscar el término a q

lo haremos con la expresión a q , no es necesario poner a\b \bq .

Ej. 30: Crea un patrón que corresponda con todas las palabras del texto.
Asegúrate de que usar búsqueda unicode.

Ej. 31: Crea un patrón que corresponda con todas las palabras del texto que
solo tengan palabras inglesas (el , cuadrante , etc.).

163

Ej. 32: Crea un patrón que coincida con un nombre de fichero que esté
formado por uno o más dígitos (el nombre del fichero no tendrá nada más que
dígitos).

Ej. 33: Crea un patrón que coincida con una ruta completa, empezando por
barra (/), seguida por cualquier número de caracteres.

Ej. 34: Crea un patrón que coincida con una ruta de un fichero txt
(terminado por .txt).

Ej. 35: Crea un patrón que coincida con los subdirectorios directos de
/var/www/ , pero no con otros directorios ni con ficheros.

Nota: los directorios terminan en / .
Ejemplo: Coincidirán /var/www/html/ , /var/www/public/ , pero no
/var/www/index.html ni /var/www/src/index.html ni /var/www/src/sam/ .

164

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 2: 2:

ClosuresClosures

1. Closures
Un closure es una función que recuerda el entorno en el que fue creada, es decir,
puede acceder a variables fuera de su ámbito interno. Aunque hay varias formas
de emplear este concepto, directamente accesible ej JS, una de la formás más
típicas es algo semejante a lo siguiente:

function mensajeria() {

 const mensaje = "Hola";

 function muestraMensaje() {
 console.log(mensaje); //mensaje está fuera de muestraMensaje
 }

 return muestraMensaje; //devuelve una función
}

const miFuncion = mensajeria(); //mensajeria() devuelve una función
miFuncion(); //muestra: Hola

La constante miFuncion es una referencia a muestraMensaje , formado un
closure, el cual almacena el valor de las variables de su entorno externo, en este
caso, la constante mensaje . Si, en la función muestraMensaje , es modificada la
variable externa, los cambios son conservados en la siguiente invocación a
miFuncion . Por ejemplo:

function mensajeria() {

 let mensaje = "Hola";

 function muestraMensaje() {
 console.log(mensaje); //mensaje está fuera de muestraMensaje
 mensaje = "¡" + mensaje + "!"; //Modificamos mensaje (externa)
 }

 return muestraMensaje; //devuelve una función
}

const miFuncion = mensajeria(); //mensajeria() devuelve una función
miFuncion(); //muestra: Hola
miFuncion(); //muestra: ¡Hola!
miFuncion(); //muestra: ¡¡Hola!!

Ej. 36: Crea un closure que referencie a una función. La función sacará por
consola (o por HTML con document.write) un cero. Si es invocado el closure

167

una vez más, deberá mostrar un uno, si es invocada una tercera vez, mostrará
un dos, y así sucesivamente.

Los closures pueden tener argumentos

function mensajeria(mensInicial) {

 const mensaje = mensInicial;

 function muestraMensaje(mensAdicional) {
 mensaje = mensaje + mensAdicional
 console.log(mensaje); //aumentamos mensaje
 }

 return muestraMensaje; //devuelve una función
}

const miFuncion = mensajeria("hola"); //mensajeria() devuelve una función
miFuncion(" que"); //muestra: Hola que
miFuncion(" tal"); //muestra: Hola que tal

Ej. 37: Crea un closure como el anterior, pero en el que el valor mostrado
inicialmente esté determinado por un parámetro pasado al crear el closure (la
función invocada tendrá que admitir un argumento).
Ejemplo: inicializo el closure con un 3. Luego lo invoco con argumento 2, lo
qu e me devuelve 5. Luego lo llamo de nuevo, con argumento 7, lo que me
devuelve 12.

Ej. 38: Crea un closure que tenga un argumento que sea una tasa (un
número). Luego, cada vez que se llame al closure, se realizará con un
argumento, y te devolverá la tasa multiplicada por el argumento pasado.
Ejemplo: inicializo el closure con 1.08. Luego, lo invoco con 10 y me imprime
10.8. Lo invoco de nuevo con 100 y me devuelve 108. Observa que no hay
valores acumulados en este closure.

Ej. 39: Haz un closure como el anterior, pero se permite invocar, tanto el
argumento inicial como en cada una de las llamadas, con los argumentos que
se desee.

168

Ejemplo: inicializo el closure con un (3,1). Luego lo invoco con argumentos
(2,2,1), lo que me devuelve 9. Luego lo llamo de nuevo, sin argumentos, lo
que me devuelve 9. Lo invoco otra vez, con 8, y me devuelve 17.

Varios closures simultáneos
En principio, los closures son independientes entre si, incluso aunque sean
creados a partir del mismo código:

function contador(x) { //x es una variable almacenada en el closure

 return function (y) {
 return x + y;
 };
}

const inicio5 = contador(5); //closure con función "x+y", y "x" valiendo 5
const inicio8 = contador(8); //closure con función "x+y", y "x" valiendo 8

console.log(inicio5(2)); // Muestra 7 (5 inicial más 2)
console.log(inicio8(3)); // Muestra 11 (8 inicial más 3)

Observa que cada closure almacena su propia variable x , independientemente de
otros closures.

Ej. 40: Haz un closure que, como argumento a la hora de crearlo, establezca
un número mayor o igual a cero. Cada vez que se invoque el closure,
devolverá primero un cero, a la siguiente llamada un 1, y así hasta el número
que se estableció al inicio. La siguiente invocación volverá a dar 0, la
siguiente 1, así sucesivamente.
Crea dos closures (cada uno con un número distinto) de ese tipo y observa que
funcionan indepencientemente.

169

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 3: 3:

ProgramaciónProgramación
funcionalfuncional

1. Introducción
La programación funcional trata de transformar un flujo de datos para obtener un
resultado. La programación funcional pura no altera el flujo original, creando un
flujo de datos adicional.

Existen varias funciones relacionadas con la programación funcional:

• Map: devuelve un flujo de igual tamaño que el original, con cada uno de los
elementos transformado en otro.

• Filter: elimina los elementos que no cumplen una condición.

• Some: Devuelve true si alguno de los elementos del flujo cumple una condición.

• Every: devuelve true si todos los elementos del flujo cumplen una condición.

• Find: devuelve el primer elemento que cumple una condición.

• Slice: devuelve una parte del flujo.

• Concat: concatena dos flujos.

• IndexOf: devuelve la posición del primer elemento que cumpla una condición

• Lastindexof: devuelve la posición del último elemento que cumpla una
condición.

• Reduce: Crea un valor resultado recorriendo cada uno de los elementos del
flujo.

También es posible crear flujos a partir de cadenas empleando split.

Las siguientes no se consideran programación funcional pura porque modifican, o
pueden modificar, el flujo original:

• foreach: realiza una acción con cada uno de los elementos.
• sort: ordena un array

• reverse: invierte un array.

171

2. Transformar elementos
La primera y más básica tarea es obtener, a partir de un flujo de datos, otro en el
que cada uno de los elementos se transforme en otro.

Map
Uno de los métodos básicos de la programación funcional. El método map recibe
un flujo de entrada (un array, un String, un Set u otros), y devuelve un elemento
de igual tipo pero con los elementos cambiados. El método map no cambia el
objeto original:

const num = [6, 4, 1, -4, -9];

const numMas1 = num.map(num => ++num); //debe ser ++num (no vale num++)

console.log(num); //[6, 4, 1, -4, -9]
console.log(numMas1); //[7, 5, 2, -3, -8]

Ej. 1: Utiliza map para duplicar cada uno de los elementos de un array de
números.
Ejemplo: si el array original es [2,7] , el array devuelto será [4,14] .

Ej. 2: Utiliza map para convertir un array de cadenas todo a mayúsculas.
Nota: String posee un método, toUpperCase() que devuelve el mismo
String pero en mayúsculas.

Ej. 3: Utiliza map para obtener las longitudes de cada cadena de un array.
Ejemplo: si el array inicial es ['Hola', 'mundo'] , se devolverá [4, 5] .

Ej. 4: Utiliza map para redondear los elementos de un array de números no
enteros.
Nota: Math.round(«número») devuelve el redondeo de «número» .

172

Ej. 5: Utiliza map para convertir un array de temperaturas expresadas en
Celsius un array de las mismas tempreraturas expresadas en grados
Fahrenheit.
Nota: si multiplicamos una temperatura expresada en grados Celsius por 9/5

y luego le sumamos 32 , tendremos la temperatura expresada en grados
Fahrenheit.

Trabajando con objetos
Como es normal, map puede trabajar con objetos. Una de las operaciones más
típicas es extraer uno de los elementos de un array de objetos:

const personas = [
 { nombre: 'Juan', edad: 25 },
 { nombre: 'Maria', edad: 30 },
 { nombre: 'Pedro', edad: 22 }
];

// Utiliza map para extraer la edad de cada objeto en el array personas
const edades = personas.map(obj => obj.edad);
console.log(edades); // [25, 30, 22]

A la hora de manipular arrays de objetos de forma más completa, a menudo nos
veremos obligados a substituir el el argumento de la función pasada a map por
uno que responda al patrón del array que estemos tratando. Por ejemplo, el
siguiente ejemplo emplea map para devolver un array con los elementos iguales
excepto la edad, que estará incrementada en uno:

const cargos = [
 { nombre: 'Juan', edad: 25, cargo:'Jefe' },
 { nombre: 'Maria', edad: 30 },
 { nombre: 'Pedro', edad: 22 }
];

// Utiliza map para devolver arrays de objetos con la edad incrementada
const c2 = cargos.map(({nombre, edad}) =>
 ({nombre:nombre, edad: edad+1})
);

const c3 = cargos.map(({nombre, edad, cargo}) =>
 ({nombre: nombre, edad: edad+1, cargo: cargo})
);

173

const c4 = cargos.map(obj => ({...obj, edad: obj.edad+1}));

console.log(cargos); // [{ nombre: 'Juan', edad: 25, cargo:’Jefe’ }, ..

console.log(c2); // [{ nombre: 'Juan', edad: 26 }, …

console.log(c3); // [{ nombre: 'Juan', edad: 25, cargo:’Jefe’ },
 // [{ nombre: 'Maria', edad: 30, cargo:undefined }, ...

console.log(c4); // [{ nombre: 'Juan', edad: 26, cargo:’Jefe’ },
 // [{ nombre: 'Maria', edad: 30}, ...

Como vemos, en p2 se pierden los atributos del array personas que no
especifiquemos expresamente. En p3 , los objetos que no tengan cargo

obtendrán dicho atributo, pues así se lo especificamos. Finalmente, en p4 ,
devolvemos un objetos con todos los atributos del original (usando el operador
“spread”, y luego sobreescribimos el atributo de edad .

Esta forma de trabajar con los objetos también será de utilidad en foreach y en
otros métodos de programación funcional.

Ej. 6: Utiliza map para extraer los nombres del array de personas usado
en los ejemplos anteriores. El resultado debe ser: ['Juan', 'Maria',
'Pedro'] .

Ej. 7: Utiliza map para extraer los nombres del array de personas usado
en los ejemplos anteriores, pero cada nombre debe estar en de un objeto. El
resultado debe ser: [{ nombre: 'Juan'}, { nombre: 'Maria'},

{ nombre: 'Pedro'}] .

Ej. 8: Utiliza map para devolver un array igual a personas, pero con los
nombres todo en mayúsculas.
Nota: String posee un método, toUpperCase() que devuelve el mismo
String pero en mayúsculas.

Ej. 9: Utiliza map para, a partir de un array de cadenas que contienen
nombres, devolver un array de objetos, que contendrán, cada uno, un atributo
de nombre y un atributo llamado id con valor 0 .

174

Por ejemplo, si el array inicial es ['Juan', 'María’, 'Jose'] , devolverá
[{nombre:'Juan', id:0}, {nombre:'Juan', id:0}, {nombre:'Juan',

id:0}] .

Ej. 10: Utiliza map para, a partir del a un del array de personas usado
anteriormente, se añada, a cada uno de los objetos del array, un campo
llamado ciudad , con valor Jaén . Observa que cada elemento de array debe
conservar sus otros campos, sin añadir ni borrar ninguno.

map con 3 argumentos
Al igual que foreach , map tiene los argumentos de elemento, índice y array.
Por ejemplo, en el siguiente código, se usa un array para crear otro que contenga
tantos números naturales positivos como valores tenga el array original:

const nums = [1.2, 17, -3, 'Hola', {id: 1}];

const numsConsecutivos = nums.map((elem, index, array) => index+1);
console.log(numsConsecutivos); //[1, 2, 3, 4, 5]

Podemos usar el índice para seleccionar qué valores modificamos. Por ejemplo, el
siguiente código reemplaza tan solo ciertos valores del array original:

const ceroAlInicio = nums.map((elem, index) => index==0 ? 0 : elem);
console.log(conCeroAlInicio); [0, 17, -3, 'Hola', {id: 1}]

const ceroAMitad = nums.map((elem, index, array) =>
 index== (array.length-1)/2 ? 0 : elem
);
console.log(ceroAMitad); //[1.2, 17, 0, 'Hola', {id: 1}]
 //Con longitud del array par, no habría cambio

Ej. 11: Utiliza map para devolver el array nums igual excepto que en las
posiciones impares (recuerda que las posiciones empiezan por 0 : que es par:
el 17 y el ‘Hola’ serán sustituidos por el valor 0).
Nota: para saber si se trata de una posición par, puede usar index%2==1 .

175

Ej. 12: Utiliza map para, a partir de un array de cadenas que contienen
nombres, devolver un array de objetos, que contendrán, cada uno, un atributo
de nombre y un atributo llamado id con valor numérico consecutivo,
empezando por 1 .
Por ejemplo, si el array inicial es [‘Juan’, ‘María’, ‘Jose’] , devolverá
[{nombre:‘Juan’, id:1}, {nombre:‘Juan’, id:2}, {nombre:‘Juan’,

id:3}] .

Ej. 13: Tenemos un array que es usa sucesión de unos y ceros, por ejemplo:
[0,1,1,1,0,0,1,0]. Cada uno de los elementos del array resultante será un XOR
de el elemento correspondiente con el anterior (el primer elemento queda
igual).
Por ejemplo, para el segundo elemento, el valor resultante será XOR(0,1)=1.
Para el tercer elemento: XOR(1,1)=0. El resultado final sería:
[0,1,0,0,1,0,1,1].

Tenemos un array que es usa sucesión de unos y ceros, por ejemplo:
[0,1,1,1,0,0,1,0]. Tenemos que generar un array en el que el valor inicial sea
igual al valor inicial del array original. A partir de ahí, el valor del array
generado cambiará si el array original es 1 o no cambiará si es 0.
Por ejemplo, para el array anterior, el array generado es [0,1,0,1,1,1,0,0]. El
valor inicial es igual (cero), y como el segundo valor es 1, en el array
generado se cambia desde el valor anterior (de cero a uno). El tercer elemento
también contiene un uno, por lo que el array generado cambiará de valor (de
uno del segundo valor a cero). El cuarto elemento es un cero, por lo que el
array generado no cambiará (seguirá con el uno del tercer elemento). Necesita
foreach

176

3. filtrar elementos
El método filter devuelve un objeto igual que el original, pero conservando
solo los elementos que cumplan una condición:

const nums = [2.1, 0, -3, "Hola", {id: 3}, "0", {}];

const numsSinCeros = nums.filter(e => e!=0);
const numsSinValoresCeros = nums.filter(e => e!==0);

console.log(numsSinCeros); //[2.1, -3, 'Hola', { id: 3 }, {}]
console.log(numsSinValoresCeros); //[2.1, -3, 'Hola', { id: 3 }, '0',
{}]

Observa que el cuerpo de la función pasada por parámetro a filter se
interpretará como un valor booleano:

const todo = nums.filter(e => 3==3);
const nada = nums.filter(e => 3!=3);
console.log(todo); //[2.1, 0, -3, 'Hola', {id: 3}, "0", {}];
console.log(nada); //[]

Ej. 14: Utiliza filter para quedarte solo con los valores numéricos del
array nums mayores que cero.
Nota: si comparamos una cadena con el operador > (por ejemplo ' cad ' >0)
o comparamos con un objeto (por ejemplo {id: 3}>0), el resultado es
siempre false .

Ej. 15: Utiliza filter para quedarte solo con los objetos del array
personas con edad mayor a 25 .

Ej. 16: Utiliza filter sobre un array de cadenas para quedarte solo con las
cadenas que tengan una longitud de 5 o más.

Ej. 17: Utiliza filter sobre el array de cargos (usado en el apartado de
map) para quedarte solo con los objetos que no tengan definido un cargo

(undefined).

177

Ej. 18: Utiliza filter sobre un array de cadenas para quedarte solo con las
cadenas que no contengan espacio.
Nota: para saber si una cadena contiene un carácter, puede usar
«cad».includes(«caracter») .

Ej. 19: Obtén, en un array de cadenas, solo aquellas que tengan más de 3
vocales. Por ejemplo, del array ['elefante', 'computadora', 'agua',
'murcielago', 'oso'] , queremos conseguir ['elefante', 'computadora',

'murcielago'] .
Nota: Para conseguir una cadena que solo tenga las vocales, puedes usar
«cad».replace(/[^aeiou]/gi, '') .

filter con 3 argumentos
Al igual que map , filter tiene los argumentos de elemento, índice y array. Por
ejemplo, en el siguiente código, se usa un array para filtrar el primer elemento:

const nums = [2.1, 0, -3, "Hola", {id: 3}, "0", {}];
const numsMenosElPrimero = nums.filter((e, index, array) => index==0);
console.log(numsMenosElPrimero); // [0, -3, "Hola", {id: 3}, "0", {}];

Ej. 20: Utiliza filter para eliminar los elementos pared (el primero y el
último) del array nums .

Ej. 21: Usa filter para eliminar todos los valores que sean iguales al primer
elemento, incluido éste. Por ejemplo, para [“a”, “c”,”a”,”g”,”a”], el array
resultante será [“c”,”g”].

Ej. 22: Utiliza filter para filtrar los números consecutivos que estén
repetidos. Por ejemplo: [3, 3, 3, 4, 3, 3] resultará en [3, 4, 3] .
Nota: Para saber si un elemento está repetido, debe compararse con
array[index-1] . Observa que está el caso especial en el que index sea igual

a 0 , en el que siempre se debe devolver true , antes de comparar, para que
no sea filtrado.

178

Utiliza filter sobre un array de números para que el array resultante no
contenga elementos repetidos. Por ejemplo, [1, 2, 3, 2, 1, 4] resultará en
[1, 2, 3, 4] .

Pista: conserva un elemento solo en caso de que su posición o índice (index)
sea igual a la primera posición que dicho elemento aparece en el array. Para
ello, «array».indexOf(«valor») te da el índice de la primera aparición de un
elemento en el array. Necesita indexOf

Ejercicios adicionales
Los siguientes ejercicios hacen uso de filter y map:

Ej. 23: Dado un array de números, obtén otro array con los valoreas
absolutos de los números negativos, descartando los que originalmente eran
positivos. Por ejemplo, para el array de entrada [5, -3, 8, -10, 12, -6,
7] , se obtendrá [3, 10, 6] .

Ej. 24: Dado el array de cadenas de nombres, obten un array con solo los
nombres compuestos, expresados en mayúsculas.

Ej. 25: Dado el array de objetos de personas con nombre y edad, obtén un
array con los nombres de aquellos que tienen hasta 25 años (inclusive). Por
ejemplo, para el array personas , el resultado será ['Juan', 'Pedro'] .

Ej. 26: Para el siguiente array:
const books = [
 { titulo: 'El Hobbit', pags: 300, disponible: true },
 { titulo: '1984', pags: 250, disponible: false },
 { titulo: 'Cien años de soledad', pags: 400, disponible: true },
 { titulo: 'Harry Potter', pags: 150, disponible: true }
];
Obtén los nombres de los libros disponibles con más de 200 páginas.

Ej. 27: En un array de números, quédate con los números que sean
divisibles por 3, y luego súmale 1 a cada uno.

179

4. Reducir array
El método reduce convierte un array a un solo valor. Se especifica un valor
inicial para un valor acumulado, y luego va ejecutando la función pasada por
argumento para cada elemento. En cada una de esas iteraciones, va calculando el
resultado de ese valor acumulado y lo va guardando para la siguiente iteración.

Por ejemplo, en el siguiente código, empezamos con un valor acumulado de 0 .
Luego, se ejecuta la función para cada elemento, siendo ese resultado acumulado
guardado:

const array = [1, 2, 3, 2, 1];
const sumaArray = array.reduce((acc, elem) => acc + elem, 0);
console.log(sumaArray); // Muestra: 9

Así, en la primera iteración, el primer argumento de la función (que es el valor
acumulado), empieza valiendo 0 . Entonces, se ejecuta la función que suma ese
0 al elmento actual 1 , resultando en uno. En la siguiente iteración, el primer

argumento vale ya 1 , que es sumado al elemento actual 2 , resultando en 3 ,
que será utilizado en la iteración siguiente, y así sucesivamente.

Ej. 28: Obtén el producto de todos los números que haya en un array de
números.

Ej. 29: Partiendo de un array de cadenas, obtén una cadena que sea la
concatenación de todas ellas.

Ej. 30: A partir de un array de números (tanto positivos como negativos),
siendo un array con un tamaño mínimo de 1 (tiene, al menos, un elemento),
obtén el número menor del array.
Nota: cuidado con el valor inicial proporcionado a reduce .

Reduce con 3 argumentos
Reduce tiene un tercer elemento, que es el índice. En el siguiente ejemplo
calculamos el factorial de un número partiendo de un array:

const array = [1, 1, 1, 1];

180

const factorial = array.reduce((acc, elem, i) => acc * (i+1), 1);
console.log(factorial); // Muestra el factoria de 4: 24

Ej. 31: El array [2, -1, 1,-4, 7, 5, -4,-1, 10, 7,-15, 6], contiene los valores de
una función:, empezando con x igual a cero. Haz que los valores que estén
por encima de la bisectriz del primer cuadrante se queden como mucho en la
bisectriz. Haz también que los números por debajo de la bisectriz del tercer
cuadrante se queden, como mucho igual a la bisectriz.

Ej. 32: Tenemos dos arrays, t1 y t2, con las medias de un alumno en las
distintas asignaturas en los dos trimestres. Realiza la nota media del alumno.
 const t1 = [3, 9, 10];

 const t2 = [1, 5, 7];

Trabajando con objetos
Reduce también puede trabajar con objetos. En estos casos, vamos utilizando los
atributos de cada uno de los objetos del array original. Por ejemplo, el siguiente
código busca el el precio más alto de entre todos los productos del array:

const carrito = [

 { nombre: "Lápiz", precio: 1, cantidad: 2, categoria: "A” },

 { nombre: "Goma", precio: 0.5, cantidad: 1, categoria: "B” },

 { nombre: "Sacapuntas", precio: 2, cantidad: 1, categoria: "A” }

];

const masCaro = carrito.reduce((mayor, actual) =>

 actual.precio > mayor ? actual.precio : mayor

, carrito[0].precio);

console.log(masCaro);

Ej. 33: Partiendo del array del carrito , obtén el precio total de los
productos del carrito. El precio total deberá tener en cuenta, por ejemplo, que
el lápiz está comprado con una cantidad de 2 .

Ej. 34: Tenemos una lista de los participantes de una carrera, ordenada de
forma creciente según su tiempo en la carrera:

181

participantes = [{nombre: ‘Alan’ , equipo:’Kelme’ , min: 2, seg: 34},

 {nombre: ‘Nikko’, equipo:’M+’ , min: 2, seg: 47},

 {nombre: ‘Fran’ , equipo:’Astana’ , min: 3, seg: 1},

 {nombre: ‘Elan’ , equipo:’Kelme’ , min: 3, seg: 12},

 {nombre: ‘Kenny’, equipo:’Astana’ , min: 3, seg: 29},

 {nombre: ‘Elche’, equipo:’M+’ , min: 3, seg: 29},

 . . .];

Debemos obtener los segundos totales empleados por el equipo Kelme . Hay
que tener en cuenta que los ganadores de la carrera son recompensados: 30
segundos de bonificación (30 segundos menos) para el primero, 20 para el
segundo y 10 para el tercero.

También podemos usar un objeto como valor acumulado, de forma que vamos
guardando resultados en dicho objeto. En el siguiente código se cuentan las
ocurrencias de cada número en un array de números, que va almacenando en un
objeto:

const numeros = [1, 8, 3, 4, 6, 1, 8, 3, 1, 8];

const ocurrencias = numeros.reduce((acc, curr) =>
 ({ ...acc, [curr]: (acc[curr] || 0) + 1 }) //Si acc[curr] es falsy => 0
, {});

console.log(ocurrencias); //Muestra: {1: 3, 3: 2, 4: 1, 6: 1, 8: 3}

Observa que debemos proporcionar, como objeto inicial, un objeto vacío: {} .

Ej. 35: A partir de un array de objetos, siendo todos los atributos distintos,
como por ejemplo [{ a: 1, b: 2 }, { c: 3 }, { d: 4 }] , combina
todos los objetos en uno: [{ a: 1, b: 2, c: 3, d: 4 }] .
Nota: en la función del reduce , tendrás que devolver un objeto con todos los
atributos del objeto acumulado (usa el operador spread), más todos los
atributos del elemento actual (usa también el operador spread).

Ej. 36: Partiendo del array del carrito anterior, obtén un objeto que
contenga todos los nombres separados por comas, el precio total y la cantidad
total. En este caso, deberemos conseguir {nombre: 'Lapiz, Goma,

Sacapunta, ', precio: 4.5, cantidad: 4 } . Observa, para el precio total,
que el artículo Lápiz tiene una cantidad de 2.

182

Ej. 37: Partiendo del array del carrito anterior, calcula el total de precio
de cada categoría: {'A':4, 'B':0.5 } .

También es posible que, al ir construyendo el objeto acumador (que en principo
es {}), queramos añadir un campo cuyo nombre sea igual al valor de una
variable. Para ello se utilizan corchetes:

const jugadores = [
 { nombre: 'José', eq: 'Kelme' },
 { nombre: 'Ana', eq: 'Nike' },
 { nombre: 'Luis', eq: 'Kelme' },
 { nombre: 'Sofía', eq: 'Adidas' },
 { nombre: 'Mario', eq: 'Nike' },
];

const conteoEquipos = jugadores.reduce(
 (acc, elem) => ({ ...acc, [elem.eq]: (acc[elem.eq] || 0) + 1 })
, {});

En el ejemplo anterior, [equipo] inserta un campo que se llamará igual al

Ej. 38: Partiendo del array de participantes de un ejercicio anterior, obtén
un objeto que tenga como campos el nombre de cada equipo como y su
tiempo empleado como los valores de dichos campos.
Realízalo inicialmente sin tener en cuenta la bonificación por los primeros
puestos, y luego añade dicha bonificación.

Generando arrays
El siguiente código genera un array igual al que se le proporciona.

const nums = [3, -1, 0, 4, 5, -3];
const r = nums.reduce((a,e) => {a.push(e); return a}, []);

Observa que el valor inicial es [] . Además, observa que debemos devolver el
acumulador con un return, ya que estamos empleando una función con llaves, y
no la versión más compacta de la función flecha. Si no se usase el return, el array
resultante estaría lleno de valores Undefined .

183

Ej. 39: Partiendo de un array de números, emplea sobre dicho array el
método reduce (y solo el método reduce) para que devuelva un array solo con
los números mayores que cero.

Ej. 40: Realiza el código de ejemplo y el ejercicio anterior empleando
concat, sin usar return.

Ej. 41: Partiendo de un array de números, usa reduce para crear un array
de valores acumulados, de forma que el valor de un array es igual a sumar
todos los valores anteriores. Realízalo también con un map (sin usar reduce).
Ejemplo: [3, -1, 0, 4, 5, -3] , resultaría en [3, 2, 2, 6, 11, 8] .

Ej. 42: Usa reduce para generar un array que devuelva el mismo array de
origen, pero en sentido inverso. Realízalo también con un map (sin usar
reduce).
Ejemplo: [-5, true, ‘hi, {a:1}] , resultaría en [{a:1}, ‘hi’, true, -5]

Ej. 43: Usa reduce para generar un array que devuelva el array original,
pero sin elementos repetidos. Hazlo luego usando un filter, sin reduce.
Pista: para el reduce, puedes usar el método «array».includes(«elemento») .
Para el filter, tendrás que usar un código parecido, pero necesitarás un slice
(para el filter, también puede hacerse con solo indexOf, sin includes ni slice).

Combinado reduce y otros métodos

Ej. 44: A partir del array de objetos carrito , calcula el precio total de la
categoría A. Hazlo de dos formas, usando un filter y sin usar un filter.

Ej. 45: Calcula el precio total del objeto carrito pero, esta vez, todos los
objetos de la categoría B tendrá un 10% de descuento. Hazlo usando un map
y un reduce. Luego, vuelve a hacerlo solo con un recude (sin usar un map).

184

Ej. 46: Obtén el nombre de los alumnos y su nota media, que pueden hacer
la FCT. Para hacer dicha FCT, un alumno debe de aprobar cada una de las
asignaturas y, para aprobar una asignatura concreta, la nota media entre el
trimestre 1 y el 2 debe ser mayor o igual a 5 (en el array propuesto, solo
aprueba Sofía):
const estudiantes = [

 { nombre: 'Ana', t1: [3, 9, 10], t2: [1, 5, 7] },

 { nombre: 'Luis', t1: [6, 2, 5], t2: [6, 5, 6] },

 { nombre: 'Sofía', t1: [9, 8, 10], t2: [1, 5, 1] },

];

El código debe ser válido para escenarios donde el número de asignaturas sea
distinto a 3. Puedes usar un reduce y, dentro de éste, otro reduce para
fusionar el t1 y el t2 a una nota media. También es posible con un map
(con un reduce dentro) y luego un filter, pero en este caso hay que establecer
como 0 la nota media si cualquier asignatura está suspensa, aunque la nota
media sea mayor que 5.

Ej. 47: Dado un array de proyectos que representa empleados con su
historial de proyectos
const proyectos =

[{ nombre: 'Juan', proyectos: [{ nombre: 'A', meses: 12 },

 { nombre: 'B', meses: 20 },] },

 { nombre: 'Lucía', proyectos: [{ nombre: 'A', meses: 8 },

 { nombre: 'C', meses: 5 },

 { nombre: 'D', meses: 10 },] },

 { nombre: 'María', proyectos: [{ nombre: 'B', meses: 6 },

 { nombre: 'C', meses: 9 },

 { nombre: 'F', meses: 14 },] }];

Obtén un array con los nombres de los empleados que han trabajado en al
menos 3 proyectos y 2 años o más: [‘María’] .

Ej. 48: A partir del array de proyectos anterior, obtén un array con los
proyectos en los que se haya trabajado 20 meses o más (el A y B).

Ej. 49: A partir del array de estudiantes anterior, obtén un array con la nota
media de cada asignatura (para una asignatura concreta, sería la suma de

185

todas las notas media de todos los estudiantes dividida por el número de
estudiantes).

Ej. 50: [solo necesita reduce] A partir del array de proyectos anterior, crea
un array que contenga un objeto para cada uno de los proyectos, cada uno con
un campo nombre , con el nombre de proyecto, un campo meses , con el
número de meses totales trabajados por todos los trabajadores, y un campo
trabajadores , con un array de los trabajadores que han trabajado en el

proyecto:
[{ nombre: 'A', meses: 12, trabajadores: [‘Juan’, ‘Lucía’] }, ...

Pista: puedes usar un reduce para tener todos los meses trabajados en un
único array: [{ nombre: 'A', meses: 12, tr: ‘Juan’ }, { nombre: 'B',
meses: 20, tr: ‘Juan’ }, { nombre: 'A', meses: 8, tr: ‘Lucía’ }, …]

y luego usar un reduce para fusionar proyectos.

Ej. 51: Calcula, a partir de un array de notas ([{nombre: ‘John’, nota:

3}, {nombre: ’Kim’, nota: 5}, {nombre: ’Jem’, nota: 8}]), un array con
la diferencia de cada una de las notas con respecto a la nota media.

Ej. 52: Dado un array con objetos heterogéneos, devuelve un array donde
estén los mismos objetos, pero solo con los campos que estén en todos.
Ejemplo: en el array de cargos, donde tenemos que todos los objetos tienen
nombre y edad, y solo algunos objetos tienen cargo, devuelve un objeto con
todos los trabajadores con solo los campos nombre y edad.

Ej. 53: A partir del array de notas de ejercicios anteriores, calcula la nota
media de los alumnos que están aprobados.

186

Ej. 53b: Obtén, partiendo del siguiente array:
const alumnos = [

 { nombre: "Ana", edad: 15,

 notas: [{ mod: "Mates", nota: 8 }, { mod: "Lengua", nota: 6 }] },

 { nombre: "Luis", edad: 16,

 notas: [{ mod: "Tech", nota: 5 }, { mod: "Historia", nota: 9 }] },

 { nombre: "Marta", edad: 14,

 notas: [{ mod: "Arte", nota: 6 }, { mod: "Ciencias", nota: 2 },

 { mod: "Dibujo", nota: 7 }]];

- Un array con las notas medias de cada alumno.

 [{alumno:’Ana’, media:7} ...]

- La nota media total ((8+6)/2 + (5+9)/2 + (6+2+7)/3) /3

- La nota más baja de todas: 2

- La nota más baja de todas {nombre:”Marta”, mod: “Ciencias”, nota:2}

 (en caso de haber varias notas iguales, quedarse con una de ellas).

- La nota media total de todas las asignaturas aprobadas.

Ej. 53c: Obtén, partiendo del siguiente array:
const libros = [

 {nombre: “1984”, data: { nivel: “alto”, tema: “PLTC”}, ventas: 80},

 {nombre: “Alice”, data: { nivel: “medio”, tema: “FANT”}, ventas: 50},

 {nombre: “Aladino”, data: { nivel: “base”, tema: “FANT”}, ventas: 20},

 {nombre: “Marx”, data: { nivel: “medio”, tema: “PLTC”}, ventas: 30},

 {nombre: “Platón”, data: { nivel: “base”, tema: “PLTC”}, ventas: 40},

];

- La suma de todos los libros de fantasía (70), usando y no usando filter.
- La suma de libros de cada nivel: {alto: 1, base:2, medio:2} .
- La suma de las ventas de todos los libros, según la temática:
 {política: 150, fantasía: 70}

- La cantidad de libros de cada temática: {política: 3, fantasía: 2}
- [NO HACER] La cantidad de libros de cada nivel según temática:
 { FANT: {alto: 1, base:2, medio:2},
 PLTC: {alto: 1, base:2, medio:2} }

187

5. Detectar y buscar elementos
Los métodos a continuación buscan o examinan los elementos de un flujo de
datos.

Every
Devuelve true si todos los elementos del array cumplen con la condición
especificada, y false en caso contrario. El siguiente código detecta si todos los
números del array son pares y, luego, si todos los números son menores que su
índice.

const nums = [14, -6, 0, -2];
const sonPares = nums.every(n => n % 2 === 0); //true
const sonPares = nums.every((e, i, arr) => e > i); //false

Ej. 54: ¿Todos los participantes de la carrera de uno de los ejercicios
anteriores tardaron más de 2 minutos y medio, sin tener en cuenta
bonificaciones? ¿Y teniendo en cuenta las bonificaciones por ser 1º, 2º o 3º?

Ej. 55: Tenemos un array [15, 5, 5, 15, 20] que indica el número de
litros de agua que entran en un depósito cada día. Al final de cada día se
necesitan extraer 10 litros. Averigua si tendremos suministro durante todos
los días.

Some
Devuelve true si al menos un elemento del array cumple con la condición
especificada. Devuelve false si ninguno la cumple.

const nums = [-1, -3, 1, -5];
const sonPares = nums.some(n => n % 2 === 0); //false
const sonPares = nums.every((e, i, arr) => e > i); //true

Ej. 56: Tenemos un array [15, 5, 5, 15, 20] que indica el número de
litros de agua que entran en un depósito cada día. Al final de cada día se

188

necesitan extraer 10 litros. Averigua si tendremos suministro durante todos
los días. Emplea some , en vez de every , para realizar el ejercicio.

Find
Devuelve el primer elemento del array que cumple la condición especificada. Si
no encuentra ningún elemento que cumpla la condición, devuelve Undefined .

const nums = [9, -3, 10, -5];
const sonPares = nums.find(n => n % 2 === 0); //10
const sonPares = nums.find((e, i, arr) => e > i); //9
const sonPares = nums.find(e => e === 0); //Undefined

Ej. 57: Devuelve el nombre del primer artículo del carrito (de ejemplos y
ejercicios anteriores) en el que la cantidad por el precio de dicho artículo
valga 2.

Ej. 58: Tenemos un array de ganancia-fecha. Devuelve la fecha de la
primera ganancia (ganancia mayor que cero);
 const ventas = [{ganancia: 10, fecha: ‘10/10/24’},

 {ganancia: 0, fecha: ‘21/11/24’},

 {ganancia: -8, fecha: ‘21/11/24’},

 {ganancia: 9, fecha: ‘21/11/24’},];

Ej. 59: Tenemos un array de ganancia-fecha. Devuelve la primera pérdida
(ganancia negativa);
 const ventas = [10, ‘10/10/24’, 0, ‘21/11/24’,

 -8, ‘21/11/24’, 9, ‘21/11/24’];

indexOf y lastIndexOf
IndexOf devuelve la posición de la primera aparición de un elemento en el array,

o bien -1 si el elemento no está en el array. Recuerda que las posiciones
empiezan por cero.

189

LastIndexOf devuelve la posición de la última aparición, o bien -1 si el
elemento no está en el array.

En ambos métodos podemos utilizar el segundo parámetro, fromindex , que
indica la posición a partir de la que se desea buscar, ignorando las posiciones
anteriores (en caso de indexOf) o posteriores (en caso de lastIndexOf), aunque
la posición indicada en fromindex sí que formará parte de la búsqueda.

const nums = [13, 10, -3, 7, -5, 10];

const primero = nums.indexOf(10); //1
const primeroDesde2 = nums.indexOf(10, 1); //1
const primeroDesde3 = nums.indexOf(10, 3); //5

const ultimo = nums.lastIndexOf(10); //5
const ultimoDesdeUlt = nums.lastIndexOf(10, -1); //5
const ultimoDesdePenult = nums.lastIndexOf(10, 4); //1

Ej. 60: Tenemos una cadena de texto que contiene varias palabras
separadas por entre si por un espacio (no hay espacios adicionales ni dobles
espacios). Sin emplear split ni similar, sino usando solo un bucle e
indexOf , crea un array que tenga las palabras separadas.

Ejemplo: con una cadena como Every light casts a shadow , se genera un
array como [‘Every’, ’light’, ’casts’, a’, ’shadow’] .

190

6. Crear flujo desde cadena
El método split se aplica normalmente a una cadena, y especifica un separador.
Lo que hace es partir dicha cadena empleando dicho separador. Por ejemplo, el
siguiente código trocea una ruta en sus distintas partes (observa que el separador
NO aparece en las partes resultantes):

const ruta = "carpeta1/carpeta2/carpeta3/archivo.txt";
const partes = ruta.split("/");
console.log(partes); //["carpeta1", "carpeta2", "archivo.txt"]

split con límite
También es posible especificar un límite al número de partes que se desean
obtener, añadiendo un segundo argumento en el split . Por ejemplo, lo
siguiente obtiene la primera palabra del texto:

const texto = "Este es un ejemplo de texto. Este texto tiene varias
palabras.";
const palabra = texto.split(" ", 1);
console.log(palabra-length); //1
console.log(palabra[0]); //"Este"

Ej. 61: Convierte una cadena con todas las vocales ("aeiou") en un array
con cada una de las letras (['a','e','i','o','u']). Observa que la
separación entre una letra y otra es la cadena vacía.

Ej. 62: A partir de una cadena de fecha completa (una cadena del tipo
"19/02/2024 15:30:45" , obtén el año usando split.

Pista: Ttendrás que partir la cadena por el espacio quedándote solo con la
primera parte. Luego deberás partir el resultado (con otro split) separando
por la barra, para, finalmente, quedarte con el tercer elemento.

191

Split y regex
También es posible realizar el split con una expresión regular. El siguiente códig
separa las palabras con cualquier espaciado (espacios, tabuladores, saltos de
líneas, etcétera) o grupo de espaciados).

const texto = "Este es un ejemplo de texto con múltiples palabras";
const palabras = texto.split(/\s+/);

Ej. 63: A partir de una cadena de fecha completa (una cadena del tipo
"19/02/2024 15:30:45" , obtén el año usando un único split.

Ej. 64: Extrae los números de un texto. Observa que los números de un
texto está separados por uno o más caracteres que no son números
(representados por \D).

Ej. 65: Empleando dos splits, extrae una lista de elementos a partir de lo
siguiente: Los alumnos son Ana, Luis y Jose (debe conseguir ["Ana",
"Luis", "Jose"] .

Ej. 66: Usa filter y split para extraer las palabras con tilde del texto: Julia

salió rápido, hacia la tienda junto al árbol, y compró café. ";

Combinando split con otros métodos
Es muy común emplear split con otros métodos para conseguir una gran cantidad
de resultados. Por ejemplo, el siguiente código parte un texto en palabras
(split), para luego reemplazar cada palabra a una que no tenga puntos ni
comas (con map , convertimos ustedes, en ustedes , sin la coma final), para
finalmente realizar un conteo de cada una de las palabras usando reduce .

const txt = "—¡Vaya!—se dijo Alicia—. He visto muchísimas veces un gato " +
 "sin sonrisa, ¡pero una sonrisa sin gato!¡Es la cosa más " +
 "rara que he visto en toda mi vida! - Alicia en el país de " +
 "las maravillas (L. Carroll)";

const cnt = txt.toLowerCase()
 .split(' ')
 .map(palabra => palabra.replace(/[^\p{L}\p{M}]/gu, ''))

192

 .reduce((acc, p) => ({ ...acc, [p]: (acc[p] || 0) + 1 }),
{});

console.log(cnt); //{vaya: 1, se: 1, dijo: 1, alicia: 2, he: 2, ...}

Ej. 67: Mejora el ejemplo anterior. Habrás visto que, debido a que hay
dobles espacios, se genera un campo indeseado en el array final representando
a la cadena vacía. Además, la separación debería hacerse no solo con el
espacio, sino con todos los símbolos de puntuación ("'.,:;!¡¿?‘’«»“”\-_—()

[]) más los espacios. Realiza el patrón regex de forma global y unicode.

Ej. 68: Escribe un programa que, usando split, cuente el número de
palabras que tiene.

Ej. 69: En base al ejercicio más arriba, cuenta el número de palabra únicas
de un texto.

Ej. 70: Tenemos un array de cadenas con los partidos disputados en los play
offs de la última Super Bowl:
const superbowl = ["Eagles 24 - 31 Chiefs", "Chiefs - bye", "Texans

14 - 12 Chargers", "Chiefs 23 - 14 Texans", "Bills 29 - 32 Chiefs",

"Eagles 28 - 22 Rams", "Commanders 45 - 31 Lions", "Eagles 55 - 23

Commanders", "Chiefs 32 - 29 Bills"];

Obtén un objeto que obtenga la ronda en a la que cada equipo llegó tal como
{“Bills”: 4, ...} (observa que, quien quedara en 1ª ronda tan solo tendrá un
partido, y así sucesivamente).

Ej. 71: Obtén ahora un objeto con los partidos jugados, los ganados, los
perdidos, puntuación total a favor y puntuación total en contra

193

7. Concaternar flujos
Concat también es un método funcional, porque no altera los operandos. Concat
puede tener uno o varios argumentos, de forma que se pueden concatenar varias
listas simultáneamente:

const arr1 = ["Celia", "Juan"]
const arr2 = ["Sofía", "Tomás", "Lola"];
const arr3 = ["Marta", "Antonio"];
const nombres = arr1.concat(arr2, arr3);
 //["Celi"a, "Juan", "Sofía", "Tomás", "Lola", "Marta", "Antonio"]

Ej. 72: Usando concat y usando una única vez length, calcula el número de
elementos totales que hay en los dos siguientes arrays:
const a1 = Math.floor(Math.random() * 10);

const a2 = Math.floor(Math.random() * 10);

194

8. foreach
El método foreach realiza una operación por cada uno de los elementos de un
array. Al método foreach se le pasa como argumento una función. Dicha
función se ejecutará tantas veces como el tamaño del array. En cada una de esas
ejecuciones, el argumento de la función será cumplementando con el valor de uno
de los elementos del array.

Por ejemplo, podemos usar un foreach para mostrar cada uno de los elementos
del array con el siguiente código:

const numeros = [6, 4, 1, -4, -9];

// Utiliza forEach para imprimir el doble de cada número en la consola
numeros.forEach(num => console.log(num));

Aquí, la función pasada por parámetro (num => console.log(num)) es ejecutada
cinco veces. En la primera ejecución num valdrá 6 , la segunda 4 , hasta la
quinta y última vez, en la que num valdrá 9 .

Ej. 73: El ejemplo anterior muestra los números en distintas líneas. En vez
de usar console.log , usa process.stdout.write . Luego, separa los números
entre si con una coma y un espacio tras cada número;

Empleando variables externas
Aunque lo siguiente se realiza mejor con ciertas funciones de programación
funcional, vamos a emplear una variable externa para realizar ciertas tareas con
el foreach . En el siguiente código calculamos el tamaño de un array usando una
variable tam externa al foreach , que vamos incrementando en cada iteración:

const numeros = [6, 4, 1, -4, -9];
let tam = 0;

// Utiliza forEach para ir sumando uno a tam en cada iteración
numeros.forEach(num => tam++);

console.log('El tamaño del array es ' + tam);

195

Ej. 74: Usando un array a tu elección, emplea una variable al inicio del
código, llamada suma , inicializada a 0 . Haz que en cada iteración se sume el
valor del elemento array a suma . Después del foreach , imprime el valor de
suma .

Ej. 75: Realiza otro código, a partir de un array a tu elección, que imprima
tantos números naturales consecutivos como elementos tenga el array. Por
ejemplo, si el array inicial es [4,5, 'aa'] , el programa mostrará 1,2,3, .
Usa una cadena, en principio vacía, que al final se imprimirá.

Ej. 76: Realiza otro código, a partir de un array a tu elección, que obtenga
la suma de los valores absolutos del array. Por ejemplo, si el array es [4,-
5] , el programa mostrará 9 .

Foreach con 3 argumentos
Aunque la anterior forma de foreach es una de la más usadas, realmente la
función que se le pasa al foreach tiene tres argumentos. El primer argumento es,
como hemos vista antes, el elemento en cuestión. El segundo es el índice del
array que estamos usando en ese momento. El tercero es el array en sí.

Por ejemplo, el código siguiente escribe en el array y pone todos los elementos a
1 . En cada iteración va escribiendo el elemento i-ésimo, estableciéndolo a 1:

const personas = [{ nombre: 'Juan' }, { nombre: 'Maria', edad: 30 }];

// Establece todos los elementos del array a 1: [1, 1]
personas.forEach((e,index,array) => array[index] = 1);

Ej. 77:  SIN utilizar una variable externa, a partir de un array a tu elección,
haz que imprima tantos números naturales consecutivos como elementos
tenga el array. Por ejemplo, si el array es [4,5, 'aa'] , el programa
mostrará 1,2,3, . Utiliza process.stdout.write para lograrlo.

Ej. 78: Genera una lista con 10 elementos (puedes usar
Array(10).fill(0)). Luego, empleando foreach, genera en dicho array los

primeros 10 números de Fibonnachi.

196

Nota: Los números de Fibonnaci son:
Fibonacci(0) = 0
Fibonacci(1) = 1
Fibonacci(n) = Fibonacci(n-2) + Fibonacci(n-1).

Foreach y objetos
Cuando trabajamos con objetos, podemos usar el primer parámetro para
modificar el objeto en si utilizando el primer parámetro.

const personas = [
 { nombre: 'Juan', edad: 25 },
 { nombre: 'Maria', edad: 30 },
 { nombre: 'Pedro', edad: 22 }
];

// Utiliza forEach para incrementar la edad de cada persona en 1 año
personas.forEach(persona => persona.edad++);

console.log(personas);

Ej. 79: Tenemos un array de objetos, en donde cada objeto tiene 2
propiedades, nombre y apellidos . Utiliza un foreach para que cada objeto
tenga un tercer campo, llamado nombreCompleto , con su apropiado valor.

Ej. 80: Suma las edades de todas las personas del ejemplo anterior con un
foreach.

Foreach no devuelve nada
En todo caso, foreach no puede, como podrán otros métodos, encadenarse,
puesto que foreah no devuelve nada:

let n = numeros.forEach(num => console.log(num + ',')); //Undefined

let p = personas.forEach(persona => persona.edad++)); //Undefined

197

9. Transformar flujos

Reverse
Reverse es un método sin argumentos que invierte el orden de un array. No es un
método de programación funcional, ya que transforma el array original.

const nums = [6, 4, 1, -4, -9];

const alReves = nums.reverse(); // Devuelve la misma referencia a nums
nums[0] = 0;
console.log(nums); //[0, -4, 1, 4, 6]
console.log(alReves); //[0, -4, 1, 4, 6]

Como vemos, reverse devuelve la propia referencia al array, no una copia, por lo
que un cambio en el array nums se translada a alReves, incluso si la modificación
se realizó tras el reverse.

Para simular una metodología de programación funcional, podemos crear una
copia del array antes de llamar a reverse. Es posible, y muy común, hacer una
copia de un array empleando el operador spread:

const nums = [6, 4, 1, -4, -9];

const alReves = [...nums].reverse(); //copia nums y luego invierte
nums[0] = 0;
console.log(nums); //[0, -4, 1, 4, 6]
console.log(alReves); //[-9, -4, 1, 4, 6]

198

PPARTEARTE IV: IV:

Servidor NodeServidor Node

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 1: 1:

Gestión delGestión del
proyectoproyecto

1. Iniciar proyecto
Abre un terminal en VSCode (Terminal New Terminal→ o Ctrl+May+` abrirá una
terminar el en panel inferior), o en el sistema operativo (sitúate, en ese caso, en el
directorio del proyecto antes creado)

Lo primero será crear un directorio para el proyecto, en el lugar que desees. El
nombre de directorio suele coincidir (aunque no tiene por qué), con el nombre de
proyecto, el cual tiene ciertas restricciones de estilo: todo en minúsculas, sin
espacios (usa guiones tales como - en su lugar) y sin caracteres especiales ni
símbolos de puntuación. Luego, entra dentro del directorio con el comando cd .

Tras esto, podemos utiliar un gestor de paquetes interno para adquirir las
dependencias de nuestros proyectos web. Podemos usar npm o yarn pero, para
nuestros proyectos, debemos de tener también el paquete de node.

sudo apt install nodejs //instala nodejs, que incluye npm
sudo apt install yarnpkg //solo si deseamos usar yarn en de npm

Importante: Debemos restringirnos a usar, o bien siempre npm o bien usar
siempre yarn en todo nuestro desarrollo, puesto que mezclar su uso puede dar
efectos indeseados.

Respecto a las ventajas de uno y otro 3 , npm es más conocido y extendido y,
aunque ha mejorado últimamente, tanto en seguridad como en otros aspectos,
yarn permite cara de módulos Plug’n’Play, así como una mayor velocidad y
seguridad.

Npm
Para crear un nuevo proyecto web con npm, escribe el comando siguiente:

npm init #creación con npm (dentro del paquete nodejs)

Completa, al menos, el nombre del proyecto, la descripción y el autor (este último
debería coincidir con tu usuario en el repositorio remoto GitLab, GitHub o
similar). El resto puedes dejar lo que te propone el sistema o dejarlo en blanco.

3 https://www.upgrad.com/blog/yarn-vs-npm-which-package-monitor-to-
choose/

203

https://www.upgrad.com/blog/yarn-vs-npm-which-package-monitor-to-choose/
https://www.upgrad.com/blog/yarn-vs-npm-which-package-monitor-to-choose/

Asegúrate, eso si, que el punto de entrada sea index.js . Cuando confirmes los
datos verás que aparece un fichero llamado package.json . Si abres este fichero
verás algo como

{
 "name": "npmbasic",
 "version": "1.0.0",
 "description": "introducción a npm y node",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "J.A. Sampedro",
 "license": "ISC"
}

Nota: Puedes ver este proceso en: https://www.youtube.com/watch?v=TF-
TJJIjPsk, aunque cambian los atajos de teclado y algún que otro detalle.

Ej. 1: ¿Qué licencia es la que establece por defecto (di sus iniciales y su
nombre completo) ¿Qué tipo de licencia es?

Ej. 2: Crea un proyecto con npm

Yarn
Podemos usar yarn, en vez de npm para crear el proyecto:

yarnpkg init #creación con yarn (paquete yarnpkg)

En este caso, se nos crearán inicializará en el directorio una serie de fichero y
directorios:

• Archivos de Git, aunque el repositorio remoto y demás configuración solo
estarán establecidos si han sido especificados en el yarn init (no en nuestro
caso).

• package.json: similar a npm, es el archivo principal de configuración del
proyecto en Node.js. Inicialmente, a diferencia que npm, contiene el nombre
del proyecto y el nombre y versión del gestor de paquetes yarn empleado.

204

https://www.youtube.com/watch?v=TF-TJJIjPsk
https://www.youtube.com/watch?v=TF-TJJIjPsk

• .pnp.cjs (Plug'n'Play – CommonJS): sado por Yarn cuando Plug’n’Play (PnP)
está habilitado. Reemplaza la clásica carpeta node_modules optimizando la
gestión de dependencias. Sirve para resolver las rutas de los paquetes sin
necesidad de instalarlos físicamente en node_modules.

• .editorconfig: archivo de configuración para editors de código como VSCode,
JetBrains, Sublime, etcétera Contiene reglas de formato (espaciado,
codificación de caracteres, etc.).

• README.md: Archivo de documentación del proyecto en formato Markdown.

• yarn.lock: Archivo de bloqueo de versiones, realizado aquí en vez de en
package.json.

• El directorio .yarn: Contiene archivos internos que usa Yarn para su
funcionamiento interno, estos fichero son incluidos en el .gitignore.

Ej. 3: Crea un proyecto con yarn

205

2. Scripts
Un script es un comando, o un grupo de comandos, definidos por el desarrollador
(o generados por las diversas herramientas) para realizar una serie de funciones,
con un nombre. Están almacenados en el apartado scripts de package.json .
Si hemos creado el proyecto con npm, podremos ver algunos:

"scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
},

En el ejemplo anterior, podemos ver los símbolos && , que separan un comando y
otro, de forma que se ejecuta el de la izquierda y luego el de la derecha.
Podríamos encadenar más comandos con otros símbolos && .

Si, por el contrario, hemos creado el proyecto con yarn, podemos añadir los
scripts con ese mismo código (u otro que deseemos) a package.json .

Ejecutar scripts
Para ejecutar un script, nos dirigimos al terminal y usamos uno de los siguientes:

npm run «nombre_script» #ejecución con npm
yarn «nombre_script» #ejecución con yarn
yarn run «nombre_script» #ejecución con yarn cuando el nombre del script
 se solapa con un comando yarn (ej: si el script
 se llamarara init).

Así por ejemplo para ejecutar el script test , podemos usar npm run test o las
otras opciones. Recuerda eso si, restringirte a usar siempre yarn o siempre npm
en la gestión de tus proyectos.

Ej. 4: Crea un script llamado format que ejecute el siguiente comando:
prettier --write . Al ejecutarlo, dará un error porque prettier no está

instalado.

Ej. 5: Crea un script llamado clean que borre la carpeta dist del
proyecto junto a todos sus directorios y luego vuelva a crear el directorio
dist .

206

3. Instalación de paquetes
Para instalar un paquete en nuestro proyecto, emplea:

npm install «paquete» #ejecución con npm
yarn install «paquete» #ejecución con yarn

Con npm, yarn v1 y yarn v2, los paquetes se instalarán en el directorio
node_modules . Podemos borrar ese directorio y el proyecto no será dañado,

aunque no funcionará hasta que se ejecuta el comando de instalación, que bajará
de nuevo los paquetes y los grabará en node_modules :

npm install #ejecución con npm
yarn install #ejecución con yarn

Lo mismo sucede con yarn v2+(PnP), pero el contenido de los paquetes se crea
en un único fichero llamado .pnp.cjs . Si se borra éste, debemos ejecutar, de
igual forma, el install , para poder seguir desarrollando el proyecto. Este
método, además, emplea una caché para que los módulos no tengan que ser
descargados si es posible.

El borrado de estos paquetes es muy usual cuando queremos compartir el
proyecto, ya que el destinatario podrá descomprimir un fichero que contenga
todo nuestro proyecto excepto el node_modules (o el .pnp.cjs), y luego hacer él
mismo el comando install .

Ej. 6: Crea un archivo index.html con una plantilla html básica (pon html
en VSCode y luego selecciona html:5 . Enlazalo con un archivo main.js con
el siguiente contenido:
import dayjs from 'dayjs';

console.log("Fecha actual:", dayjs().format('YYYY-MM-DD HH:mm:ss'));

Prueba a ejecutarlo y, luego, a instalar el paquete dayjs antes de volver a
ejecutarlo de nuevo.

Dependencias de desarrollo.
Existen dos tipos de dependencias, de forma que un paquete puede instalarse de
forma normal, como hasta ahora, y éste será necesario para la versión de

207

producción, o bien como desarrollo, de forma que el paquete solo sea necesario
durante el desarrollo. Las órdenes para instalar un paquete de esta forma son:

npm install «paquete» --save-dev
yarn add «paquete» --dev

Lo siguiente es un ejemplo de lo que se añadiría a package.json tras añadir
como dependencia el paquete eslint :

 "devDependencies": {
 "eslint": "^8.59.0"
 }

Ej. 7: Cambia el archivo index.html para eliminar algunas de las
tabulaciones del archivo (quedarán casi todas las etiquetas a la izquierda),
guardando el resultado. Luego, instala el paquete como dependencia de
desarrollo prettier y ejecuta el comando format .

Ej. 8: Borra el directorio node_modules e intenta ejecutar de nuevo el script
format , que deberá dar error. Ejecuta npm install y verás como ahora si

funciona.

208

4. Servir proyecto
Vamos a crear un pequeño proyecto web. Los ficheros de desarrollo, (tanto html,
js, jsx, css y otros) se sitúan normalmente en el directorio src de nuestro
proyecto. En ese directorio situamos el archivo src/index.html, que empleará un
JavaScript y un archivo de estilo, por ejemplo:

<!DOCTYPE html>
<html lang="es">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <title>Mi Proyecto Web</title>
 <link rel="stylesheet" href="style.css" />
 </head>
<html>
 <body>
 <h1>Hola</h1>
 <script src="main.js"></script>
 </body>
</html>

El archivo src/main.js va a ser algo muy simple, como por ejemplo:

document.write('Si, este es uno de mis primeros proyectos!');

Por su parte, el archivo CSS conta con algún formato relativo a la página web,
como establecer el color de fondo, la letra, etcétera.

Finalmente, para servir es proyecto vamos a usar un servidor sencillo que
podemos usar con npm y yarn , llamado serve . Debemos ejecutarlo de forma
global con npx , en vez de instalarlo y usar npm .

npx serve src/ #no es la mejor idea el servir el directorio src.

Ej. 9: Crea un proyecto nuevo con npm init , y crea el directorio src junto
a los archivos HTML, CSS y JS arriba mencionados. Luego sirve el directorio
src con serve, y emplea el navegador para ir a la dirección indicada y ver el

proyecto en él. Observa que, en la terminal donde servimos la web, se
produce un error 404. Arregla dicho error.

209

Sin embargo, servir el proyecto src no es una buena idea. Lo normal es crear
tener un directorio build (o similar) y copiar los ficheros en él. Para ello,
podemos usar cpy para crear un script en package.json con el comando cpy
'src/**/*' build (si el directorio build no existe, entonces lo creará). Para

mejorar aún más el script, podemos usar el paquete rimraf para poder borrar el
directorio build y su contenido con el comando rimraf build . Observa que
dichos paquetes deben instalarse como dependencias de desarrollo.

Ej. 10: Crea el mencionado script build , el cual llamará rimraf y luego (en
el mismo script build) llamará a cpy para crear build y copiar el contenido
de src en build.

210

5. Empaquetadores

Parcel
Borra "main": "index.js" de package.json, instala parcel y ejecuta npx parcel

build src/index.html para empaquetar el proyecto hacia dist (el directorio por
defecto de parcel). Usa npx parcel src/index.html para ejecutarlo en modo
desarrollo.

Ej. 11: Crea un proyecto nuevo que implemente Parcel para empaquetar el
proyecto. Instala Parcel como dependencia de desarrollo en el proyecto. El
proyecto tendrá scripts para ejecutarlo y para construirlo. Observa que, como
hemos instalado parcel de forma local, en los scripts no debe aparecer npx .

Webpack
Debemos instalar webpack y ciertos paquetes asociados, que serán dependencias
de desarrollo

npm init -y
npm install --save-dev webpack webpack-cli html-webpack-plugin css-loader
webpack-dev-server style-loader

El HTML difiere de lo anterior, de forma que no hay ninguna llamada directa.

<!DOCTYPE html>
<html lang="es">
 <head>
 <meta charset="UTF-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <title>Mi Proyecto Web</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <h1>Mi Proyecto Web</h1>
 <p>Bienvenido a mi proyecto. La fecha actual es:</p>
 <div id="fecha"></div> <!-- Script lo inyecta HtmlWebpackPlugin -->

211

 </body>
</html>

En el index.js hacemos uso de datejs, de forma que deberemos instalarlo e
importarlo (esta vez como dependencia normal). También importamos el estilo
CSS, para que sea aplicado a los componentes aquí contenidos.

// Importamos el CSS para que webpack lo procese
import './style.css';
// Importamos la librería datejs instalada vía npm
import 'datejs';

// Seleccionamos el elemento donde mostraremos la fecha
const fechaElemento = document.getElementById('fecha');

// Usamos datejs para obtener la fecha actual y formatearla
fechaElemento.textContent = Date.today().toString('dd/MM/yyyy');

El archivo CSS, en nuestro caso llamado style.css, podría ser, por ejemplo:

body {
 font-family: 'Roboto', sans-serif;
 background-color: #f2f2f2;
 padding: 20px;
}

Webpack necesita una configuración que puede ser compleja. En nuestro caso,
que es un proyecto sencillos, básicamente lo que indicamos en este archivo es la
salida, los plugins que se utilizan para inyectar el estilo, los HTMLs y los scripts, y
ciertas opciones de desarrollo. El archivo webpack.config.js sería:

const path = require('path');
const HtmlWebpackPlugin = require('html-webpack-plugin');

module.exports = {
 // Archivo de entrada
 entry: './src/index.js',

 // Configuración de salida
 output: {
 filename: 'bundle.js', // Nombre del bundle generado
 path: path.resolve(__dirname, 'dist'), // Carpeta de salida
 clean: true, // Limpia la carpeta dist antes de cada build
 },

212

 // Reglas para procesar distintos tipos de archivos
 module: {
 rules: [
 {
 test: /\.css$/, // Para todos los archivos CSS
 use: ['style-loader', 'css-loader'], // Cargadores que permiten
importar CSS en JS
 },
],
 },

 // Plugins
 plugins: [
 new HtmlWebpackPlugin({
 template: './src/index.html', // Toma el index.html de src y le
inyecta el bundle
 }),
],

 // Modo de compilación: 'development' o 'production'
 mode: 'development',

 // Configuración del servidor de desarrollo
 devServer: {
 static: path.resolve(__dirname, 'dist'),
 port: 8080,
 open: true, // Abre el navegador al iniciar
 },
};

213

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 2: 2:

Servidor webServidor web
propiopropio

Conectar scripts con node
Vamos ahora a definir otro script, uno llamado start . Este script lo que hará,
será iniciar el servidor, cuyo punto de entrada, recordemos, es index.js .
Para lograrlo, lo primero que haremos será crear un fichero con ese nombre
(index.js) y, por el momento, ponemos tan solo un mensaje de que se ha
iniciado el servidor:

console.log("servidor iniciado");

Ahora, si nos dirigimos al terminal, podemos ejecutar el siguiente comando
para ejecutar el siguiente comando (no se apreciará gran cosa, tan solo se
iniciará el servidor y luego terminará):

node index.js

Para conectar el script con node, vamos a establecer un script, llamado start ,
que ejecutará el anterior comando (no olvides poner comas para separar los
distintos campos de un JSON:

"scripts": {

 "start": "node index.js,

 "test": "echo \"Error: no test specified\" && exit 1"

},

A partir de ahora, si escribimos en la terminal el siguiente comando, nos ejecutará
el script start, el cual lo que hace es iniciar el servidor:

npm run start

Vamos a crear otro script, llamado dev, que tenga la instrucción npm -watch
index.js :

"scripts": {

 "start": "node index.js,

 "dev": "node --watch index.js",

 "test": "echo \"Error: no test specified\" && exit 1"

},

Ej. 12: Cambia el script de test para que ponga el mensaje en español (o,
si deseas conservarlo en inglés, pon un mensaje algo más completo).

Ej. 13: Añade un script llamado help , que muestre un mensaje de ayuda
(pon cualquier texto referente al proyecto). Observa que el resultado de esta
acción será éxito, es decir, deberá devolver 0 .

Nota: Puedes ver algo similar a lo anterior en https://www.youtube.com/watch?
v=Ok3b8bbztzU&t=306s.

Ejecutar proyecto
Pulsa el icono de la barra lateral de ejecución (el tercer icono, que tiene forma de
play), y verás que la barra lateral ofrece varias opciones. Dentro de Run and
Debug , pulsa create a launch.json file y, cuando el sistema te ofrezca una

serie de opciones, elige la de Node.js . Todo esto y modificará la barra lateral de
ejecución, y también creará un archivo launch.json dentro del directorio
.vscode :

215

https://www.youtube.com/watch?v=Ok3b8bbztzU&t=306s
https://www.youtube.com/watch?v=Ok3b8bbztzU&t=306s

{

// Use IntelliSense to learn about possible attributes.

// Hover to view descriptions of existing attributes.

// For more information, visit: https://go.microsoft.com/fwlink/?

linkid=830387

 "version": "0.2.0",

 "configurations": [

 {

 "type": "node",

 "request": "launch",

 "name": "Launch Program",

 "skipFiles": [

 "<node_internals>/**"

],

 "program": "${workspaceFolder}/index.js"

 }

]

}

A partir de este momento, en la barra lateral de ejecución se verán los paneles de
ejecución y depuración. Podemos emplear el botón de “play” de arriba para
ejecutar nuestro proyecto. Por ahora, al pulsarlo, la barra de estado inferior se
tornará brevemente un color naranja, puesto que se lanzará el fichero index.js

y luego finalizará (recordemos que, por ahora, solo posee una línea de código).

216

2. Crear el servidor
Muchas veces haremos uso de módulos existentes que ya implementan una
funcionalidad que deseamos incorporar a nuestro proyecto. En nuestro caso,
emplearemos el módulo http para gestionar las peticiones a nuestro servidor.

Crear el servidor con el módulo http
Vamos ahora a modificar el código del fichero index.js con lo siguiente:

const http = require('http');

// Página a servir

let page = '<!doctype html><title>Hola></title><body>Hola mundo ';

//Creación del servidor

const server = http.createServer((req, res) => {

 res.writeHead(200, { 'Content-type': 'text/html' });

 res.end(page);

});

// Inicia el servidor para escuchar peticiones

server.listen(5000, 'localhost', () => {

 console.log('El servidor está escuchando en el puerto 5000')

});

En el código anterior se realizar 4 cosas. En primer lugar, se importa un módulo
llamado http , que es un módulo integrado en el sistema y que no necesita ser
instalado (llamados core modules).

En segundo lugar, definimos una página web, en formato html, que será servida
por el servidor node cuando un cliente (un navegador) lo pida.

En tercer lugar, creamos un servidor, al cual debemos pasar una función. Dicha
función tiene como parámetros una petición (request: req) y una respuesta
(response: res). Por ahora, la función primero escribe en la respuesta una
cabecera con un código 200 OK, y luego escribe la página definida arriba,
terminando la conexión con res.end .

217

Finalmente, iniciamos el servidor en el puerto 5000 de localhost. El mensaje que
escribimos con console.log será un mensaje escrito en el servidor al iniciar el
servidor, y NO en la consola del navegador.

Ej. 14: Haz que la página a servir sea más completa, con un código html
más completo: que tenga título (title), establezca el idioma (lang), con un
contenido que posea un título (por ejemplo, hola mundo con <h1>) y un
texto en un párrafo (<p>).

Ej. 15: Modifica el puerto de escucha a, por ejemplo, 9000. Emplea una
constante, llamada LISTEN_PORT, y úsala en vez de escribir el número de
puerto en mitad del código.

Ej. 16: Modifica el código para que se envíe un texto de ¡Hola Mundo! .
Observa que, ahora, el MIME devuelto debe ser de tipo text/plain .

Ej. 17: Busca cuales son los core modules y pon una muy breve descripción
de cada uno.

Ej. 18: Establece el content-type a text/html; charset=utf-8 . Prueba
la página servida en el ejercicio 4, usando caracteres en la web tales como la
admiración de inicio (¡).

Añadir paquetes al proyecto
Conforme vayamos desarrollando el proyecto, iremos necesitando módulos que no
están integrados en node . En el siguiente ejemplo vamos a usar el módulo
stringify, que lo tendremos que instalar. Stringify nos permite convertir objetos
de JS a texto.

Para realizar la instalación, nos dirigimos al terminal dentro de VSCode y
ejecutamos lo siguiente:

npm install stringify

218

Lo que hará que se instale el módulo stringify en el directorio node_modules , y
podamos usarlo ahora en el código. Para ello, tenemos que usar un require ,
como el en anterior módulo http :

const http = require('http');

const stringify = require('json-stringify-safe');

let page = `<h1>Hello <h2><p>Your age are <p>`;

const server = http.createServer((req, res) => {

 res.writeHead(200, { 'Content-type': 'text/html;

charset=utf-8' });

 res.end(stringify(req));

});

// Inicia el servidor para escuchar peticiones

server.listen(5000, 'localhost', () => {

 console.log('Server is listening at localhost on port 5000')

});

Ej. 19: Busca un módulo (también llamado paquete) que ponga en
mayúsculas las primeras letras de cada palabra. Puedes buscarlo en
https://www.npmjs.com.

Ej. 20: Busca qué hace el módulo llamado express .

219

https://www.npmjs.com/

3. Rutas
Hasta ahora, el servidor mostraba siempre lo mismo, independientemente de la
ruta que tenga el servidor. Vamos a cambiar la función de respuesta del servidor,
de forma que calculamos la ruta de la petición (pathname) y devolvemos justo
eso.

const http = require('http');

const stringify = require('json-stringify-safe');

// Página a servir

let page = '<!doctype html><title>Hola></title><body>Hola mundo ';

//Creación del servidor

const server = http.createServer((req, res) => {

 res.writeHead(200, { 'Content-type': 'text/plain;

charset=utf-8' });

 const url = new URL(req.url, `http://${req.headers.host}`);

 res.end(stringify(url.pathname));

});

// Inicia el servidor para escuchar peticiones

server.listen(5000, 'localhost', () => {

 console.log('El servidor está escuchando en el puerto 5000');

});

Ej. 21: Haz que, en la página inicio, se muestre una página web con una
bienvenida, mostrando un texto con la ruta en el resto de rutas. El resto de
páginas mostrará la página web de Hola mundo .
Nota: La página de inicio deberá activarse cuando el cliente pida
/index.html o / .

Ej. 22: Haz que, si la ruta solicitada es un archivo distinto a html (que su
extensión sea distinta a .html , se devuelva un error 404 sin ningún
content-type (usa la función writehead con un solo argumento, y luego la

función end sin ningún argumento).

220

Nota: en Node, para saber si una cadena termina en .html puede usarse
«cadena».endsWith('.html') .

Enviar ficheros
Crea, con el explorador de VSCode, un directorio llamado files , que será
nuestro directorio base de ficheros a servir. Dentro de dicho directorio, crea un
fichero llamado base.html .

Vamos ahora a usar otro módulo integrado en node, que es el módulo fs , para
cargar las páginas desde archivo. Lo que hacemos es cargar el fichero en un
stream y enviarlo a la respuesta. Si se produce algún error (básicamente, que no
encuentre el archivo), se envía un código de error 404.

const BASE_PATH = "files";

const http = require('http');

const fs = require('fs');

//Creación del servidor

const server = http.createServer((req, res) => {

 const url = new URL(req.url, `http://${req.headers.host}`);

 var stream = fs.createReadStream(BASE_PATH + url.pathname);

 console.log(BASE_PATH + url.pathname);

 stream.on('error', function() {

 res.writeHead(404);

 res.end();

 });

 res.writeHead(200, { 'Content-type': 'text/html;

charset=utf-8' });

 stream.pipe(res);

});

// Inicia el servidor para escuchar peticiones

server.listen(5000, 'localhost', () => {

 console.log('El servidor está escuchando en el puerto 5000')

});

221

Ej. 23: Haz que el servidor comprueba si la ruta de la página termina
en .html, en cuyo caso devolverá la página web correspondiente (si existe). En
otro caso, mostrará un mensaje de error.
Nota: esto evita al servidor tener que buscar ficheros que no sean html (por
ejemplo, en el caso de que nuestro servidor solo contenga ficheros html,
evitando accesos a disco.

Ej. 24: Usa const homepage = fs.readFileSync(BASE_PATH +

"/index.html", "utf8"); al inicio del código (justo debajo de los require)
para cargar la página web de inicio hacia una cadena.
Ahora, comprueba si la ruta solicitada es / o /ndex.html , en cuyo caso
deberás servir la página cargada homepage . En otro caso, haz lo que se indica
en el ejercicio anterior.
Nota: esto nos permite tener en memoria una página que, supuestamente, se
emplea con asiduidad, de forma que evitamos accesos a disco.

Ej. 25: Usa telnet para conectar con el servidor y ver, a bajo nivel el
funcionamiento del servidor. Por ejemplo, usa telnet localhost:5000 y pon
lo siguiente para acceder a la página base.html :
GET /base2.html

host: localhost

(luego tendrás que pulsar enter dos veces). Explica brevemente (no pegues
el resultado, en su lugar explícalo) el resultado de una petición encontrada
una que no (distingue entre lo que es la cabecera y el contenido).

222

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 3: 3:

Crear proyectoCrear proyecto
ReactReact

1. Create React App
Create React App es una aplicación conocida y cómoda para proyectos existentes,
y tiene una comunidad más establecida. Hoy por hoy funciona solo con la
versión anterior de React, la versión 18.

Crear aplicación
Para crear la aplicación, deberás ejecutar el siguiente comando, que bajará los
paquetes necesarios y ejecutará la aplicación

npx create-react-app «directorio»

Posiblemente dará un error, porque Create React App emplea la versión 18 de
React, pero tendrás instalada la versión 19. Vamos a hacer que nuestro proyecto
emplee React 18, para lo cual tendremos que abrir el package.json y cambiarlo
a dicha versión.

"react": "^18.X.X",
"react-dom": "^18.X.X"

Ahora tendremos que reinstalar, para lo cual deberemos primero borrar el
directorio node_modules y hacer una instalación:

rm node_modules
npm install

Ej. 26: Ejecuta los comando anteriores para crear una aplicación de React
usando Create React App. Busca en Internet para saber cuál es la última
subversión de React 18.

npm run start

Se abrirá una pestaña en el navegador. Cada cambio guardado en el código
automáticamente se mostrará en el Pulsa Ctrl-C para parar el servidor.

npm install --save-dev web-vitals
npx run build

225

npx serve -s build

Tras ello, puedes abrir la dirección http://localhost:3000 para ejecutar la
aplicación de React. Pulsa Ctrl-C para parar el servidor.

Estructura
Create React App crea dos directorios fuente, src y public, que serán los que serán
utilizados para crear la versión final del proyecto, la cual se sitúa en build.

226

2. Vite
Vite supera a Create React App en velocidad gracias a su compilación en tiempo
real, y ofrece una configuración más sencilla basada en ESM, por lo que es
preferible para proyectos nuevos.

Crear aplicación
Para crear un nuevo proyecto, podemos emplear:

npm create vite

Escribe el nombre del proyecto (recuerda usar solo minúsculas y guiones),
selecciona React y, finalmente, selecciona JavaScript. Con ello te habrá creado
un directorio con el proyecto. Para ejecutarlo, deberás introducirte dentro del
directorio, instalar los paquetes y ejecutar el script dev .

cd «proyecto»
npm install
npm run dev

Ej. 27: Crea un proyecto de React (usando JavaScript) con Vite.

Estructura
Con Vite, no aparece la carpeta public. En package.json habrá menos
dependencias que Create React App, porque éste último instala de base muchas
más cosas de base. Si en Vite quisieramos usar algunas de ellas tendríamos que
instalarlas y configurarlas manualmente. Tampoco hay un README.md o un
manifiest que tendríamos que crear nosotros en caso de necesitarlo.

En Vite aparece un archive vite.config.js que permitirá configurar ciertos aspectos
de Vite en nuestro proyecto.

227

3. Main y componente principal
En primer lugar, creamos una aplicación con Vite (React + JavaScript), y
borramos todo el contenido del directorio src, dejando el resto como están. Para
el nombre del proyecto puedes emplear mi-primera-App o el nombre que desees.

Vamos ahora a implementar el funcionamiento de una aplicación muy sencilla en
un archivo jsx que podemos llamar de forma igual o parecida al nombre de la
aplicación u otro que deseemos, por ejemplo MiPrimeraApp.jsx . Esta aplicación
va, tan solo, a mostrar un mensaje:

export function MiPrimeraApp() {
 return <h1>¡¡Mi primera aplicación!!</h1>
}

Tenemos ahora que crear el archivo main.jsx , que será el que llame a la
aplicación:

import React from "react";
import ReactDOM from 'react-dom/client';
import { MiPrimeraApp } from "./MiPrimeraApp";

ReactDOM.createRoot(document.getElementById('root')).render(
 <React.StrictMode>
 <MiPrimeraApp />
 </React.StrictMode>
);

Observa que tenemos que importar ciertos elementos de React, y también el
fichero que contiene la aplicación. La importación elegida no es con export

default , por lo que tendremos que poner llaves en el import de main.jsx . Otra
opción sería usar un default export en el archivo de la función, aunque esto
ocasionaría que, en main.jsx , tendríamos que decidir un nombre para usarlo en
ese fichero main.jsx .

Ejecutar la aplicación
Para ejecutar la aplicación para el desarrollo, podemos ejecutar el script dev ,
que realmente llama a vite:

228

npm run dev

Con esto se abrirá un navegador que cambiará cada vez que grabemos cambios en
los archivos fuente.

Si quisiéramos crear una página web final, para publicarla en un servidor,
podemos ejecutar el script build del proyecto, que lo que realmente hace es
invocar internamente a Vite con el comando vite build :

npm run build

Para servir esa web generada en dist, podemos usar un servidor web incluido en
npm llamado Serve. El siguiente comando bajará, si es necesario, el mencionado
paquete y servirá la web como si de un Apache muy básico se tratara:

npx serve dist

Si examinamos el fichero index.html generado, vemos que es una página web que
puede ser servida por cualquier servidor Apache, Nginx o similar.

<!doctype html>
<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <link rel="icon" type="image/svg+xml" href="/vite.svg" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Vite + React</title>
 <script type="module" crossorigin src="/assets/index-ulgK4Yt5.js">
 </script>
 </head>
 <body>
 <div id="root"></div>
 </body>
</html>

229

4. Modificando app

Añadiendo CSS
Se crea un archivo css e luego se importa en main.jsx .

Ej. 28: Dentro del directorio src , Crea un archivo el nombre de
style.css , que establezca el color de letra rojo oscuro (u otro color que

desees) a todos los hijos body que sean de tipo h1 con un color de letra (u
otro formato que desees). Para usarlo, añade import "./style.css"; al
fichero main.jsx .
Sustituye ahora el código devuelto para que sea un h1 y un párrafo, ambos
encapsulados con un div . Comprueba que el h1 ha perdido el formato.
Obsérvalo con el inspector del navegador.

Fragmentos
El archivo de la aplicación creado arriba devuelve tan solo un elemento HTML. Si
quisiéramos devolver varios, uno tras otro, nos daría error. Una posibilidad es
encapsular ambos con un <div> , pero eso nos conllevaría añadir ese div al
código, que incluso podría afectar al código CSS involucrado.

React tiene una forma de solucionarlo, que es con fragmentos, los cuales actúan
como un nodo HTML pero luego no se materializan en el código final. El
problema es que hay que hacer una importación cada vez que son usados. React
permite evitar el import si, en lugar de <Fragment> y </Fragment> , se usan <>

y </> .

Import { Fragment } from 'react'; //Puede quitarse si se usan <> y </>.

export function MiPrimeraApp() {
 return (

<Fragment> //Puede reemplarse por: <> junto al cierre
 //No aparece en la aplicación final.

 <h1>¡¡Mi primera aplicación!!</h1>
 <p>Una aplicación de React</p>
 </Fragment> //Reemplarse por: </> junto a <>.
 //No aparece en la aplicación final.

230

);
}

Ej. 29: Usa Fragments en App.jsx para que vuelva a funcionar el formato
en h1 .

Código JS
Para insertar código JS en la función que devuelve la aplicación, podemos usar
llaves.

const mensaje = {
 titulo: "¡¡Mi primera aplicación!!",
 texto: "Una aplicación de React",
};

const getTexto = (admiracion) => {
 return admitacion ? mensaje.texto : `¡${nombre}!`;
};

export function MiPrimeraApp() {
 return (

<>
 <h1> {mensaje.titulo} </h1>

 <p> {getTexto(true)} </p>
 </>
);
};

Se puede insertar booleanos, null, undefined (aunque todos ellos no muestran
nada), números, texto, o incluso arrays, pero no puede insertarse un objeto
directamente (podríamos usar JSON.stringify para convertir el objeto a cadena y
entonces mostrarlo). Siempre que sea posible, debemos poner estos valores y
funciones de forma externa a la función componente que exportamos para ser
renderizada por React.

Ej. 30: Tras el nodo de párrafo (<p>) del ejemplo, añade una tabla de una
sola fila que se construya llamando a una función. Dicha función devolverá

231

un array declarado fuera de la función con el valor [null, undefined, “”,
0, “hola!”, true] .

Ej. 31: Cambia el array por [“El”, “fuego”, “no”, “tiene”, “sombra”]

(u otro que quieras). Haz que la función devuelva una tabla de una sola línea
con tantas celdas como valores tenga el array, y cada palabra en una celda.

React Developer Tools
Instala el plugin de React Developer Tool. Habilitará, en la zona de Herramientas
del desarrolador (normalmente mostradas con Ctrl-May+I), un par de pestañas
que son Componenets y Profiler.

Propiedades
Las propiedades es un canal de comunicación del padre al hijo. Lo normal es
realizar desestructuración en las propiedades.

export const MiPrimeraApp = (props) { //(props) -> ({titulo})
 return (

<>
 <h1> {props.titulo} </h1> //{props.titlo} -> {titulo}

 <p> {getTexto(true)} </p>
 </>
);
};

Puedes usar la pestaña de Componenets en React Developer Tools para cambiar
las props de forma dinámica.

export const MiPrimeraApp = ({titulo = "¡Mio primera App!}) {

Para pasar valores del componente padre podemos hacer algo como lo siguiente.
Para pasar cadenas se haría con comillas, para números y otros tipos con llaves, y
para boleanos se puede hacer con llaves o simplemente poniendo el argumento
para true o no ponerlo para false:

<MiPrimeraApp title="Mi 1ª App" subtitulo={123} subrayado />

232

Existe una librería para forzar que los las propiedades sean de un tipo concreto,
de forma que si no lo son se mostraría un warning. Se debe instalar la librería,
que se llama Proptypes con lo siguiente.

npm install prop-types

Para usarla en un componente, hay que importar la librería en él:

import PropTypes from’prop-types’

Ahora se pueden establecer tipos por defecto. También se pueden definir los
valores por defecto con defaultProps.

MiPrimeraApp.propTypes = {
 titulo: PropTypes.string.isRequired,
 subtitulo: PropTypes.number.isRequired,
}

MiPrimeraApp.defaultProps = {
 titulo: "titulo por defecto" //No tiene sentido si titulo es requerido
 codigo: 123 //No definido en los args de MiprimeraApp, pero es válido.
}

Cambiar estados con Hooks

import { useState } from 'react';
import PropTypes from 'prop-types';

export const CounterApp = ({valorInicial}) {

 const [counter, setCounter] = useState(valorInicial);

 const sumaUno = () {
 setCounter(counter + 1); //No vale counter++;
 //setCounter(() => counter + 1); //Otra forma de hacerlo
 }

 return (
<>
 <h1> {props.titulo} </h1>

 <p> {getTexto(true)} </p>
 button onClick={ sumaUno }> +1 </button>
 </>
);
};

233

Ej. 32: Realiza un componente que represente un producto. En los
parámetros del padre se pasará un nombre de producto, una descripción corta,
un precio, y un descuento (entre 0% y 100%), y el stock existente. La
cantidad de productos inicial será cero.
Con dos botones, el usuario podrá modificar la cantidad, que será controlada
con un Hook (useState). Esto hará que cada uno de los botones deba llamar a
una función que hará uso del Hook. Controla para que el número de
productos esté entre 0 y el stock existente.
El precio será calculado cada vez que cambie la cantidad, teniendo en cuenta
el descuento.
Aplica CSS al componente. Para ello crea un archivo CSS con el mismo
nombre que el componente hijo y, en dicho componente hijo, importa el
archivo CSS.

234

PPARTEARTE V: V:

Instalación webInstalación web

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 1: 1:

Instalación deInstalación de
Apache2Apache2

1. Instalación
Para instalar el servidor apache, debemos utilizar el gestor de paquetes del
sistema. En sistemas Debian, bastaría con el comando:

apt install apache2

Tras la instalación, el servidor Apache se iniciará automáticamente. Para
comprobar que está instalado y ejecutándose adecuadamente, se puede abrir un
navegador y buscar la dirección http://localhost/ . Ello debería mostrar una
página web por defecto con el mensaje de que Apache2 está instalado
correctamente. Observa que Apache2 es un programa demonio (daemon), es
decir, un programa que se ejecuta en segundo plano, de forma que al iniciarse no
se lanza ninguna interfaz que interactúe con el usuario.

Ej. 1: Instala el servidor Apache2 en linux. Durante la instalación, debería
iniciarse el servidor automáticamente. Comprueba que funciona usando el
método descrito arriba.

Documentación
La documentación de Apache2 puede encontrarse en
https://httpd.apache.org/docs/2.4/

Ej. 2: Mirando la documentación: ¿el módulo mod_cache es nuevo en
Apache 2.4 (es decir, no estaba en anteriores versiones)?

Directorios
El servidor web apache utiliza, principalmente, dos directorios:

• Directorio /etc/apache2 . Almacena la configuración del servidor apache2.
• Directorio /var/www/html . Almacena los ficheros web que serán servidos o

interpretados por apache2 cuando un navegador u otro cliente conecte con
ellos.

239

https://httpd.apache.org/docs/2.4/
http://localhost/

Analizar la red
En el navegador Firefox, pulsa Ctrl+Mayús+I para abrir la consola de desarrollo
web. Allí, se puede ver la red de una conexión con todos sus detalles. Pulsa
“Desactivar Caché” y limita la conexión a “DSL” o bien a “Regular 4G/LTE”.

Ej. 3: Dirígete a Google y haz una búsqueda cualquiera. Usando
“Archivo→Guardar Como”, guarda la página con un nombre sin espacios ni
símbolos (se guardará un fichero .html y un directorio con el mismo nombre).
Mueve dicha página al directorio de páginas web. Usa un navegador para que
te muestre la página web que acabas de guardar.
Analiza la red del sistema web y contesta a las siguientes preguntas:
¿Cuantas conexiones tienes en total y qué cantidad de megabytes se han
transferido?
Existen algunos archivos tienen un tamaño, pero la cantidad transferida es
distinta ¿qué tamaño tienen en el servidor? ¿cómo es posible que la cantidad
transferida es menor si el archivo se ha recibido correctamente?
¿Cual es el tipo de archivo que suele poseer mayor tamaño?
Existe un tipo de archivo que en nuestro servidor posee igual valor en tamaño
real que en tamaño transferido, pero que en el servidor de Google cambia
¿qué tipo de fichero es? ¿Por qué sucede, a grandes rasgos, que en Google el
tamaño transferido sea menor y en nuestro servidor no?
¿Qué servidor está, por tanto, más optimizado?
Algunos ficheros son recibidos cuando se accede a Google, pero luego en
nuestro servidor fallan (no son servidos por nuestro servidor). ¿Por qué puede
suceder esto?
Mira en las cabeceras de los archivos ¿que versión(es) de HTTP se usa(n)?

240

2. Estado del servidor
El servidor web (o, dicho de otro modo, el demonio apache2) puede iniciarse o
pararse a través de su “programa interfaz”, llamado apache2ctl. Los siguientes
comandos paran, inician o reinician el servidor web:

apache2ctl stop #Detiene apache2
apache2ctl start #Inicia apache2
apache2ctl restart #Reinicia apache2

Sin embargo, como veremos luego, se recomienda usar systemctl, en lugar los 3
comandos anteriores.

En todo caso, apache2ctl proporciona un par de funcionalidades adicionales, que
no tienen contrapartida en systemctl. La primera de ellas es realizar una
comprobación de la configuración sin reiniciar el servidor. Esto es especialmente
útil, en ahorro de tiempo, en sistemas que poseen cientos o miles de servidores:

apache2ctl configtest #Comprueba configuración

También se puede obtener el estado del servidor. Para ello, éste debe estar
ejecutándose (no estar parado), y nuestro sistema debe tener instalado el
navegador de texto Lynx, puesto que lo que realmente realiza este comando es
usar el navegador Lynx para leer la página http://localhost/server-status .

apt install lynx #Instala Lynx
apache2ctl status #Muestra estado del servidor
apache2ctl fullstatus #Muestra estado completo

Nota: la página http://localhost/server-status es creada por el módulo
(mod) llamado status , el cual se define activo por defecto cuando
realizamos la instalación inicial de Apache. Si desactiváramos dicho
módulo, estos dos comandos darían error.

Ej. 4: Leyendo el estado del servidor, ¿qué versiones, como mínimo, de
HTTP soporta? ¿cuál es el tamaño por petición?

241

FQDN
Al realizar el comando de configtest, Apache2 nos informará que no puede
determinar el Full Qualified Domain Name (FQDN). El FQDN está formado por
dos elementos:

• Nombre de dominio (domain name). El nombre de Internet asociado a nuestra
organización, como example.com. Es asignado por la ICANN.

• Nombre de host (domain name). Es el nombre de la máquina dentro del
dominio, como por ejemplo mail. En principio, es la organización a la que se le
asigna el nombre del dominio la que establece los nombres de host.

Combinando ambos, conseguimos el FQDN, como por ejemplo mail.example.com,
que identifica a una máquina concreta. Una máquina puede alojar varios FQDN,
pero un FQDN no debe ser compartido por varias máquinas.

Ej. 5: Somos una organización a la que han asignado el dominio
“iesvirgendelcarmen.com”, y queremos asignarle a una máquina el nombre de
“practicas” ¿Cuál sería el FQDN de la máquina?
¿Podríamos asignarle también dicho nombre a otra máquina de nuestra red?
¿Podríamos asignarle a esa misma máquina otro nombre, además del que ya
tiene?

Fichero envvars
El fichero /etc/apache2/envvars define usa serie de aspectos usados por el
comando apache2ctl. Básicamente, define el valor que tendrán una serie de
variables de entorno. Por ejemplo, en éste fichero se define el valor de la variable
de entorno APACHE_RUN_USER como www-data . Así, de esta forma, cuando un
componente de apache haga uso de dicha variable, utilizará el valor definido
aquí. En concreto, esta variable define que los ficheros creados por Apache2
dentro del directorio de páginas pertenecerán al usuario llamado www-data .

Las variables de entorno rara vez se modifican, salvo que se deseen varias
instancias de apache simultáneas, o se necesite una cantidad excepcionalmente
grande de descriptores de ficheros.

242

Ej. 6: Escoge una variable de entorno (solo una de ellas) que esté definida
en el fichero envvars que no la comentada anteriormente. Describe
brevemente qué hace y cómo afecta la variable al comportamiento de
Apache2. Busca en Internet si es necesario.

243

3. Uso de systemctl
Es preferible usar systemctl, en vez de apache2ctl, para iniciar, parar o reiniciar el
servidor Apache. La razón de ello es que, de usarse apache2ctl, el sistema base de
linux (systemd) puede no quedar informado de los últimos cambios en el estado
del servidor, cosa que no ocurres si se usa systemctl.

systemctl stop apache2.service #Detiene apache2
systemctl start apache2.service #Inicia apache2
systemctl restart apache2.service #Reinicia apache2

Observa que, cada vez que un programa o demonio es ejecutado, el sistema le
proporciona un número de proceso disponible (uno que no esté asignado a ningún
proceso). Cuando un proceso termina, dicho número vuelve a estar disponible,
pero no inmediatamente, para evitar errores.

Los comandos anteriores serán de gran utilidad puesto que, cada vez que
cambiemos la configuración de Apache, deberemos reiniciar el servidor para que
esa configuración surta efecto.

Además, systemctl también permite mostrar el estado del servidor. Sin embargo,
esta información difiere de la proporcionada por apache2ctl. Aquí, se muestran
los procesos que usa el demonio en cuestión (apache2), y los comandos que se
llaman para parar, iniciar o reiniciar el servidor (realmente, se llama a
apache2ctl):

systemctl status apache2.service #Muestra info de sistema

Una vez se muestre el estado, puedes pulsar :q para volver a la línea de
comandos.

Ej. 7: Usa systemctl para ver los números de proceso (PID: Process
Identification Number) que Apache2 está usando. Usa el comando ps -e

para ver todos los procesos que en ese momento se están ejecutando en el
sistema ¿Coinciden los números de proceso? ¿Cuańtos procesos usa Apache en
tu sistema?
Nota: el comando grep «texto» analiza un texto de entrada para luego
mostrar solo las líneas que contienen «texto». Se usa mucho, combinado con
pipes, para filtrar la salida de otros programas. Por ejemplo, el comando ps
-e | grep firefox ejecuta en primer lugar ps -e , originando un listado de

244

todos los procesos. Luego, gracias al pipe | , ese listado se usa de entrada al
comando grep firefox , que muestra solo las líneas que contengan el texto
firefox . Con ello logramos mostrar únicamente los procesos de firefox.

Ej. 8: Reinicia el servidor apache, y luego usa el método que desees para
ver los PIDs de Apache ¿Son los mismos que antes? ¿Por qué?

Ej. 9: ¿Qué diferencia hay entre ver el estado (status) con systemctl y con
apache2ctl? ¿qué tipos de datos (del sistema, etc.) nos proporciona cada uno?

245

4. Desinstalación
Para una completa desinstalación, primero debemos parar el servidor,
preferiblemente con systemctl:

systemctl stop apache2.service #Detiene apache2

Tras ello, debemos desinstalar todos los archivos de apache2, a través de gestor
de paquetes del sistema. En sistemas Debian seería:

apt purge apache2 #Elimina apache2
apt-get autoremove #Elimina paquetes que no sean necesarios

Si, tras la instalación, los ficheros de configuración permanecieran aún en el
sistema (para una posible reinstalación, etc.), podríamos reinstalarlos con:

rm -rf /etc/apache2

Ej. 10: Crea o copia (si es que no tienes ya) un par (o mas) de archivos
cualquiera (algún fichero de texto, una página html sencilla, una copia de la
web por defecto, etc.) dentro del directorio /var/www/html . Realiza una
desinstalación del servidor ¿Qué sucede con los ficheros almacenados en
/var/www/html ?.

Sabiendo que otros paquetes y servidores también podrían usar dicho
directorio ¿Por qué crees que se da dicho comportamiento?
Tras ello, vuelve a instalar el servidor.

246

5. Mime
MIME sirve para indicar de qué tipo es un fichero, de forma que cada fichero
tiene un único tipo. Por ejemplo, un fichero de texto será de tipo text/plain , y
un fichero de música codificado en formato MP3 será de tipo audio/mpeg 4 .

Como norma general, el MIME de un fichero se calcula mirando extensión. Por
ejemplo, al fichero documento.odt se le asignará un MIME de
application/vnd.oasis.opendocument.text . Las extensiones reconocidas por el

sistema se definen en /etc/mime.types .

Ej. 11: Busca un formato de imagen y apunta su MIME y su extensión. ¿Qué
tipo MIME se le asignará a un fichero llamado cuya extensión sea .ogg ?

Fichero magic
El fichero /etc/apache2/magic es usado por el módulo de Apache mime_magic,
el cual por defecto está inactivo.) para averiguar el tipo MIME de un fichero. Si
se activa este módulo, Apache2 mira primero la extensión para determinar el tipo
MIME del archivo. Si no está ahí definido, entonces examina el contenido del
fichero usando el fichero magic.

Cuando es llamado el módulo mime_magic, se examinan las líneas del fichero
magic, intentando encontrar un parámetro que corresponda. Lo más sencillo es
que una línea determine el forma con un valor. Por ejemplo, si a partir del 4
byte, el fichero contiene una cadena igual a moov, entonces el fichero es de tipo
video/quicktime . (byte significa un byte concreto, belong significa big endian

long de 4 bytes, etc.).

4 string moov video/quicktime

También existen la líneas condicionadas, de forma que la primera línea no posee
un formato, sino que es seguida por otra o varias líneas con un mayor al inicio.
Los siguiente determina que una aplicación es de tipo ichitaro (versión 4) si el
fichero empieza por DOC y en el byte posición 43 vale 0x14 o bien en la posición
144 está la cadena JDASH.

4 RFC 3003: https://tools.ietf.org/html/rfc3003.

247

https://tools.ietf.org/html/rfc3003

0 string DOC
>43 byte 0x14 application/ichitaro4
>144 string JDASH application/ichitaro4

Si aún así no puede determinarse el MIME del fichero, se le asigna
application/octet-stream . También es posible cambiar la prioridad o el tipo

devuelto si no se puede determinar el tipo.

Ej. 12: Mirando el archivo magic, averigua que MIME calcularía Apache
para un fichero que empiece por #!/bin/perl .

Ej. 13: ¿Se tiene en cuenta el primer byte para saber si un archivo es de
tipo application/pgp-keys ?

Ej. 14: Un fichero que empiece por DOC podría ser candidato al mime
application/ichitaro4 ¿Qué otra/s condición/es debe cumplir para serlo?

Ej. 15: ¿Qué condiciones tiene que tener un archivo para que sea
considerado como image/x-portable-pixmap .
Nota: En magic, cuando aparece el término 7bit al final de la línea, indica que
el fichero a examinar será leído como si estuviera codificado en formato 7 bit
(se ignora el bit más significativo al hacer la comparación). Para este ejercicio
ignora este hecho.

Ej. 16: Busca un sistema multimedia en el que, cuando el bit 7º de su cuarto
byte sea “1”, entonces se trate de un formato, pero si es “0”, se trata de otro
formato.
Nota: El fichero tendrá otros requisitos, ya que lo anterior lo cumplen todos
los ficheros.

Ej. 17: Busca otro formato en el que, a partir de la posición 4 tenga la
cadena ftypavc1 o ftypavc1 .

248

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 2: 2:

Directivas deDirectivas de
configuraciónconfiguración

1. Ficheros de configuración
El fichero apache2.conf5 es el fichero de configuración maestro de Apache2, y
está situado en el directorio /etc/apache2/ . Es leído por Apache2 al iniciarse
(usando apache2ctl start o, preferiblemente, a través de systemctl), y regula
todo el comportamiento del servidor.

Incluir ficheros
Para evitar que apache2.conf sea demasiado grande para ser manejable, y para
agrupar las directivas de configuración de forma ordenada, el fichero
apache2.conf hace uso de dos directivas:

• Include . El fichero incluido es obligatorio de forma que si no está disponible o
posee algún error de sintaxis, el servidor no podrá iniciarse (se originará un
error).

• IncludeOptional . Si el fichero incluido no está disponible, simplemente ese
componente no se carga, pero no se origina error.

Ej. 18: ¿Cuál es el único fichero que, inicialmente, es incluido de forma que
si no está presente da error? ¿cuáles son los ficheros opcionales incluidos?

Inicialmente, los archivos importados en el fichero de configuración son los
siguientes:

• Archivo ports.conf . Define los puertos en los que escucha el servidor web.
• Archivos .load y .conf del subdirectorio mods-enabled . Son los archivos de

configuración de los módulos activos. Un módulo de Apache es un componente
que añade funcionalidades al servidor web. Algunos de ellos están activos en
una configuración por defecto.

• Archivos .conf del subdirectorio conf-enabled . Estos archivos definen
comportamientos típicos del servidor, como establecer páginas de error
personalizadas, establecer una seguridad básica, etc.

5 En otros sistemas, el fichero apache2.conf tiene de nombre httpd.conf .

251

• Archivos .conf del subdirectorio sites-enabled . Define los sitios virtuales
(Virtual Hosts) del servidor. Permite definir varias webs independientes, todas
ellas usando el mismo demonio. Por defecto, solo está configurado el servidor
virtual por defecto.

Importante: Cualquier cambio en el fichero apache2.conf , o de cualquiera de
los ficheros importados, solo es efectivo cuando se reinicia el servidor.

Ej. 19: Cambia el fichero de configuración donde se definen los puertos de
escucha para que se llame listen_ports.conf . Configura el servidor para
que escuche en los puertos 80 y 8080 (tendrás que consultar en la
documentación sobre el funcionamiento del fichero que controla los puertos
de escucha) . Describe las líneas que hay que cambiar y/o añadir, y en qué
archivos. Tras ello, revierte los cambios.
Nota: para comprobar que el servidor escucha en un puerto, puedes usar el
navegador y acceder a una página existente, añadiendo dos puntos y el puerto
a comprobar. Si no se especifica número, el puerto por defecto es 80. De esta
forma, las direcciones http://localhost y http://localhost:80 son
equivalentes.

Directivas core y no core
Para la configuración de Apache, podemos incluir, en los archivos de
configuración, una serie de directivas definidas por Apache, pudiendo diferenciar
dos tipos.

Las directivas core, que pueden ser usadas en todos los archivos de
configuración, sin necesidad de tener instalado ningún módulo. Cada una de
estas directivas tienen una sintaxis concreta, y afecta a un aspecto concreto del
servidor.

Inicialmente, en el fichero maestro apache2.conf se definen las directivas
mostradas más abajo. Establecen el directorio base de ejecución del servidor,
configuración del log, así como varios comportamientos al servir los ficheros a un
cliente (permite hasta 100 conexiones persistentes con máximo de espera de 5ms,
etc.).

252

http://localhost:80/
http://localhost/

DefaultRuntimeDir ${APACHE_RUN_DIR} #Directorio de ejecución
Timeout 300 #Segundos antes de cerrar conexión sin transferencia
KeepAlive On #Múltiples solicitudes en la conexión
MaxKeepAliveRequests 100 #Solicitudes máx. Por conexión
KeepAliveTimeout 5 #Tiempo máx. Entre solicitudes.
HostnameLookups Off #Convierte IPs en nombres.
ErrorLog ${APACHE_LOG_DIR}/error.log #Directorio del log
LogLevel warn #Nivel de log
PidFile ${APACHE_PID_FILE} #PID del proceso principal
User ${APACHE_RUN_USER} #Usuario de los ficheros a servir
Group ${APACHE_RUN_GROUP} #Grupo de los ficheros a servir
LogFormat “……. #Formato del archivo de log

La documentación de todas las directivas core puede encontrarse en
https://httpd.apache.org/docs/2.4/es/mod/core.html

Ej. 20: ¿Dónde se definen los valores de ${APACHE_RUN_DIR} y
${APACHE_LOG_DIR} y similares?

Ej. 21: Escribe la ruta completa del fichero de log de Apache con la
configuración por defecto.

Ej. 22: Busca en la documentación y escribe qué hacen dos de las directivas
anteriores que no sean la de Errorlog .

Ej. 23: ¿Qué realiza la directiva DocumentRoot ?

También están las directivas definidas por módulos , los cuales son
componentes adicionales que complementan la funcionalidad del servidor con
nuevos comportamientos. Las directivas de estos módulos vienen en sus
correspondientes ficheros de configuración, dentro de mods-enabled, como por
ejemplo, en dir.conf :

DirectoryIndex index.html index.cgi index.pl index.php index.xhtml index.htm
#Establece los archivos de directorio

253

https://httpd.apache.org/docs/2.4/es/mod/core.html

2. Directivas de contexto
Son directivas core, con una etiqueta de apertura y otra de cierre, al estilo de
XML o HTML. Definen un objetivo, que puede ser un directorio, un conjunto de
ficheros o una condición, de forma que las directivas en su interior solo son
válidas para ese objetivo o si esa dirección se cumple.

• Directory: Define configuraciones específicas para un directorio y todos sus
subdirectorios. No permite el uso de caracteres especiales como si sucede en
Files . Todas las rutas de directorio pasados por Apache terminarán en / .

Ejemplo: <Directory "/var/www/html/home/"> (la barra final es necesaria).

• DirectoryMatch, afecta a los directorios cuya ruta case con una expresión
regular, no incluyendo a los subdirectorios, a menos que éstos también casen
con la expresión regular. Todas las rutas de directorio pasados por Apache
terminarán en / .

Ejemplo: <DirectoryMatch "\/tmp\/$"> afecta a todos los directorios llamados
tmp, y <DirectoryMatch "\/tmp\/"> incluye también a los subdirectorios,
mientras que <DirectoryMatch "\/tmp\/.+"> afecta solo a los subdirectorios.

Observa que . incluye el carácter / , por lo que deberás usar [^/] para
indicar cualquier carácter que no tenga barra. Así, por ejemplo, para indicar
los directorios con un nombre que empiece por tmp, pero no a sus
subdirectorios, hará que poner <DirectoryMatch "\/tmp[^/]*\/$"> .

• Files: Aplica configuraciones a archivos específicos basándose en nombres
exactos o comodines simples: ? equivale a un carácter cualquiera, * equivale a
cualquier número de caracteres. También puedes poner ! al inicio para negar
la condición. Files nunca tendrá que lidiar con el carácter / .

Ejemplo: <Files "!a*.jpg"> , equivale a todos los archivos que no sean una
“a” seguida por cualquier cadena, y con extensión jpg.

• FilesMatch: Afecta a los archivos que coincidan con una expresión regular.
FilesMatch nunca tendrá que lidiar con el carácter / .

Ejemplo: <FilesMatch "\.jpe?g$"> , equivale a todos los archivos que tengan
extensión jpg o jpeg.

254

Apache 2 no gestiona archivos que posean una barra (/) en el nombre, a pesar
de que hay sistemas de archivos que permiten ficheros con dicha barra en su
nombre.

• IfModule: Evalúa si un módulo específico de Apache está habilitado antes de
aplicar configuraciones dentro de su bloque. También es posible indicar el
código fuente del módulo, que terminará en .c . Si se quiere una regla para
cuando el módulo NO esté activado, se debe incluir una admiración al inicio
del nombre del módulo.

Ejemplos: <IfModule mod_dir.c> , <IfModule mod_php> y <IfModule !
mod_rewrite> .

• Location: Configura reglas basadas en la URL solicitada, en lugar de la
ubicación en el sistema de archivos. Ejemplo, <Location "/miubicacion"> .
Rara vez se anidan las directivas Location/LocationMatch con las directivas
Directory/DirectoryMatch, aunque sería posible hacerlo. Esta directiva NO
permite el uso de la admiración para negar la condición, ni el uso de comodines
(* o ?).

• LocationMatch: Permite afectar a las rutas que correspondan con una archivos
que coincidan con una expresión regular. Por ejemplo, para indicar a todas las
URLs que empiecen por /private . <LocationMatch "^/private/.*"> .

Recuerda que todas las rutas empiezan por / , y observa que se pueden hacer
consideraciones similares a las de DirectoryMatch, de forma que tendrás que
elegir bien cuando usas . , [^/] y la terminación ^ .

• Limit y LimitExcept: Restringen configuraciones según el método HTTP (GET,
POST, PUT, etc.). Ejemplo <LimitExcept GET POST> , que se aplica a todas las
peticiones que no se hayan realizado con los métodos GET o POST.

Todas estas directivas se declaran, como se ha visto, encerradas por < y > . Tras
las directivas que sea, aparecerá una etiqueta de finalización. Por ejemplo, lo
siguiente afecta a todos los ficheros con nombre de 6 caracteres y que terminen
en a.jpg .

<Files "?a.jpg">
 # Las directivas aquí especificadas solo afectan a los archivos

255

 # de 6 caracteres que terminen en a.jpg, en cualquier ruta.
</Files>

Varias de estas directivas pueden anidarse entre sí:

<IfModule mod_dir.c>
 <Directory "/var/www/html/img/">
 <FilesMatch "^[a-zA-Z][0-9]{1,2}\.jpg$">
 # Las directivas aquí especificadas solo afectan a los archivos jpg
 # en "/var/www/html/img/" y sus subdirectorios que empiecen por una
 # letra y sigan por uno o dos números letra, y solo solo si el
 # módulo mod_dir está activo.
 </FilesMatch>
 </Directory>
</IfModule>

Ej. 24: Escribe las directivas necesarias para poder afectar a todos los
ficheros que terminen en .es que estén alojados en /var/www/html/lang o
en sus subdirectorios.

Ej. 25: Crea una directiva que solo se aplique si el módulo mod_rewrite

está habilitado y afecte a los métodos DELETE y POST.

Ej. 26: Crea una regla que afecte a todos los ficheros php en los que no se
emplee el método GET.

Ej. 27: Haz una regla que afecte a todo los ficheros de las URLs que
empiecen por /src/ seguidas un un número entre 100 y 5000 (sin extensión).
Ejemplo: afectaría a URLS como /src/120 y /src/1000 , pero no a /src/1 ,
/src/a100 , /src/1000/ ni /src/1000/100 .

Nota: Para el patrón que conforme el número, hay 3 posibilidades: (1) que
esté entre 0 y 999, (2) que esté entre 1000 y 4999, o (3) que sea 5000.
Puedes contemplar las tres posibilidades usando un or y paréntesis: (| |) .

Ej. 28: Haz una regla que afecte a las operaciones POST con una URLs que
apunte a los ficheros que estén contenidos en todos los directorios que se

256

llamen downloads (los directorios llamados downloads podrán estar en
cualquier sitio.

Ej. 29: Haz una regla solo efectiva con el módulo modrewrite no esté
activo, que afecte a todos los ficheros en el directorio /var/www/tmp (no a
ficheros en subdirectorios), y cuyo nombre esté compuesto solo por números
(cualquier cantidad de éstos, pero al menos uno) y tenga una extensión de
tmp o swap .

Ejemplo: Afectaría a operaciones POST en /user1/download/fich1 o
/download/fich2.js , pero no a /download/ o a /general/download/tmp/ o
/general/download/tmp/fich .

Ej. 30: Escribe una regla, usando Files (no FilesMatch) que corresponda con
todos los ficheros de exactamente 5 caracteres, más una extensión cualquiera
de exactamente 3 caracteres. Solo será aplicable para el método POST.

Ej. 31: Escribe una directiva que afecte a todos los ficheros de máximo 3
caracteres que estén en el directorio /var/www/resources , pero que no afecte
a los subdirectorios de éste.

Ej. 32: Escribe una regla que, en caso de no estar activo mod_alias, afecte a
todos los subdirectorios directos de /backups .
Ejemplo: afectará a /backups/01/ , pero no a /backups/01/tmp/ .

Ej. 33: La ruta /link/ en las URLs apunta a un directorio concreto de
nuestro sistema. Escribe una regla que afecte a todos los ficheros,
subdirectorios y ficheros en subdirectorios de ese directorio, pero no al propio
directorio /link/ .
Nota: en este caso, asume que, para acceder a esos ficheros y directorios, se
hace a través de la URL que empiece por /link/).

Ej. 34: Tenemos una configuración especial en la que todos los archivos .es
de nuestro sistema con extensión .es son servidos con la URL
/lang/«archivo».es (por ejemplo, /var/www/html/esp/hi.es será servido

257

con la URL /lang/hi.es). Crea una regla que afecte a todos esos archivos
usando .es .

Ej. 35: Crea una única directiva que afecte a cada uno de los siguientes:
a) A todos los ficheros que terminen en .log . No uses FilesMatch.
b) A cualquier URL que contenga /admin/ en cualquier parte del path.
c) Al directorio /var/www/html/privado/ y todos sus subdirectorios.
d) A todos los ficheros llamados config.php o config.perl .
e) A URLs que terminen en /api .
f) A todos los directorios llamados backup y a todos sus respectivos
subdirectorios.
g) A todos los directorios dentro de /opt/logs/ y todos sus respectivos
subdirectorios, pero no al propio directorio /opt/logs/ .
h) A las URLs que empiecen con /intranet/seguro .
i) A todos los ficheros con 3 o menos caracteres. No uses FilesMatch.
j) A todas las URLs que apunten a un directorio con nombre home .
k) A todas las URLs que apunten a un fichero o directorio con un nombre o
alias que tenga extensión .html .
l) A cualquier fichero cuyo nombre esté formado por una o más letras inglesas,
números y/o guiones bajos, seguido de la extención .backup .
m) A URLs que contengan /debug/ en cualquier parte del path.
n) Al directorio /etc/apache2/ , pero no a subdirectorios.
ñ) A los subdirectorios directos de /home/user/ .
o) A las URLs que apunten a un directorio config que esté dentro de otro
directorio llamado home (entre ambos, pueden haber uno o varios
directorios).
p) A todos los ficheros formados por uno o más dígitos y extensión .log .
q) A los subdirectorios directos de los directorios llamados secure , pero no a
los propios directorios llamados secure .

258

30: <Limit POST> <Files "?????.???">

31: <DirectoryMatch "^\/var\/www\/resources\/$"> <FilesMatch ".{,3}">

32: <Ifmodule "!mod_alias"> <DirectoryMatch "^\/backups/[^\/]+^\/">

33: <DirectoryMatch "^\/link/.+"> <Files "*.es">

34: <Directory "/lang/"> <Files "*.es">

35:

a) <Files "*.log">

b) <LocationMatch "\/admin\/">

c) <Directory "/var/www/html/privado/">

d) <FilesMatch "config\.(php|perl)">

e) <LocationMatch "\/api$">

f) <DirectoryMatch "\/backup\/"> #Afecta a todas las rutas con direct. backup

g) <DirectoryMatch "^\/opt\/logs\/.+"> # ”.*” fuerza que no sea ese direct.

h) <LocationMatch "^\/intranet\/seguro"> #Sin barra final (URL)

i) <Files "!????*"> #Lo que no sea algo con 4 o mas (????*) caracteres.

j) <LocationMatch "/home/$">

k) <LocationMatch "\.html\/?$"> #La “?” es para apuntar a fichero o direct.

l) <FilesMatch "^\w+\.backup$"> #La barra es para que . Sea el caracter “.”

m) <LocationMatch "\/debug\/">

n) <DirectoryMatch "^\/etc\/apache2\/$" /> #Directorymatch obligatorio

ñ) <DirectoryMatch "^\/home\/user\/[^\/]+\/" /> #solo direct. directos

o) <LocationMatch "^\/home(\/.*\/|\/)config\/$">

p) <FilesMatch "^\d+\.log$"> #Barra para escapar el punto.

q) <DirectoryMatch "/secure/[^/]+\/$">

259

3. Directivas de acceso
Las directivas Require permiten o deniegan el acceso a recursos, ficheros y
directorios. Las directivas Require deben estar bajo una de las siguientes:

• Dentro de alguna de las siguientes directivas de contexto Files, FilesMatch,
Directory, DirectoryMatch, Location, LocationMatch.

• Dentro de una directiva de VirtualHost .

• En un archivo .htaccess .

• A nivel global.

Un ejemplo de esta directiva sería:

<Directory "/public">
 Require all granted #Acceso incondicional al directorio /public
</Directory>

Existen diversas condiciones para permitir o denegar acceso:

Require all granted #Permite acceso incondicionalmente
Require all denied #Restringe acceso incondicionalmente
Require ip 192.168.1.100 #Permite acceso a esa IP
Require not ip 10.0.0.0/8 #Permite acceso a esa red
Require user admin #Permite acceso identificado a ese usuario

También pueden combinarse varias de estas directivas entre sí con RequireAll o
con RequireAny :

<RequireAll> #Permite acceso al usuario admin que esté en la red indicada
 Require ip 192.168.1.0/24
 Require user admin
</RequireAll>

<RequireAny> #Permite acceso si se accede en la red y/o se está
 #identificado como user1
 Require ip 192.168.1.0/24
 Require user user1
</RequireAll>

260

Ej. 36: Crea las directivas necesarias para que los archivos en /debug (pero
no sus sbdirectorios) sea accedidos solo por el usuario admin y el usuario
reviewer .

Ej. 37: Crea una regla para que /debug/private y todos sus subdirectorios
solo sean accesibles por admin , y solo desde la red con IPs desde 192.168.0.1
hasta 192.168.0.254 (la 0 y la 255 se reservan para la dirección de red y la
dirección broadcast).

Ej. 38: Crea una regla para que los ficheros que empiecen por .log (en
cualquier directorio), sea solo accesible solo por la ip 10.8.0.1, y solo cuando
esté autentificado como admin.

261

4. Directiva Options
La directiva Options establece qué funcionalidades más alla del acceso a
archivos y directorios. Al igual que Require , puede emplearse en los siguientes
contextos:

• Dentro de alguna de las siguientes directivas de contexto Files, FilesMatch,
Directory, DirectoryMatch, Location, LocationMatch. La opción Indexes solo es
posible en Directory o DirectoryMatch.

• Dentro de una directiva de VirtualHost .

• En un archivo .htaccess .

• A nivel global.

En los apartados siguientes se detallan los argumentos posibles de Options ,
pudiendo combinar varios de ellos. Options habilita la(s) opción(es) indicada(s)
y niega el resto, a menos que se use + / - . Ejemplos de directivas serían:

<Directory "/public/">
 Options None #No permite ninguna funcionalidad adicional
</Directory>

<Directory "/dmz/">
 Options All #Activa todas las opciones posibles excepto MultiViews.
 #Desaconsejada por cuestiones de seguridad.
</Directory>

<Directory "/dmz/">
 Options Indexes FollowSymLinks #Activa dos opciones, negando el resto.
</Directory>

<Directory "/dmz/">
 Options +Indexes -FollowSymLinks #Deja la configuración existente, pero
 #añade indexes y elmina FollowSymLinks
</Directory>

Índice de directorios
Con Options Indexes se permite mostrar un listado de los archivos de un
directorio si no hay un archivo de índice, como index.html o index.php (el

262

mostrar el archivo de índice tiene preferencia sobre el listado de directorios). El
mostrar estos listados puede exponer archivos sensibles.

Enlaces simbólicos
Apache es capaz de usar los enlaces simbólicos del sistema, pero esta opción está
desactivada por defecto, a menos que se establezca en apache2.conf o similar
(como así sucede para algunos directorios). Para habilitar los enlaces simbólicos
en un directorio utilizaremos Directory o DirectoryMatch o en el
correspondiente .htaccess, aunque también lo podemos situar a nivel global o a
nivel de VirtualHost para que afecte a todo el servidor o a todo el host virtual:

<Directory "/hub/dmz">
 Options FollowSymLinks
</Directory>

<DirectoryMatch "/auth/.*/linkToApp/">
 Options SymLinksIfOwnerMatch
</DirectoryMatch>

La opción de SymLinksIfOwnerMatch funciona igual que FollowSymLinks, pero
solo habilita los enlaces en los que el propietario del enlace es el mismo que el
destino del enlace.

Ej. 39: En mi web, todos los archivos han sido copiados o generados con el
usuario y el grupo de Apache (en una instalación por defecto de Ubuntu,
www-data:www-data) ¿tendré problemas si uso SymLinksIfOwnerMatch ?

Repaso: ¿cómo e definían ese usuario y ese grupo?

Ej. 40: Crea dos directorios dentro de /var/www/html/ , llamados original

y link . Dentro del directorio original, crea una página web mínima llamada
original.html . , que muestre, tan solo, el mensaje Página original . Crea

en directorio link un enlace a esa página, con nombre link.html .
Escribe el comando necesario para crear el enlace.
Nota: para comprobar que el enlace está creado correctamente, puedes usar
un navegador y acceder a la dirección http://localhost/link/link.html. El
servidor debería servir la página web mostrando el mensaje Página
original .

263

http://localhost/link/link.html

Nota 2: los enlaces simbólicos se crean con el comando ln -s .

Ej. 41: Teniendo el enlace creado del ejercicio anterior, establece en
apache2.conf (justo tras el cierre de la directiva <Directory
/srv/>...<Directory>), las directivas necesarias para que en el directorio
/var/www/html/link no se permitan enlaces. Escribe las directivas creadas.

Nota: para comprobar que no se siguen los enlaces en ese directorio, usa un
navegador para acceder a la dirección http://localhost/link/. Debería
mostrarse el directorio, sin ningún archivo.
Nota 2: ¡Recuerda! Tras cualquier cambio en apache2.conf o en los ficheros
incluidos por éste, debes reiniciar el servidor para que los cambios surtan
efecto.

Multiviews
La opción Options Multiview habilita la negociación de contenido basado en el
nombre del archivo. Permite que el servidor web sirva automáticamente la
variante más adecuada de un recurso solicitado, sin que el cliente especifique la
extensión completa del archivo. La selección puede basarse en parámetros como
idioma, tipo MIME, codificación o contenido comprimido.

Ej. 42: Habilita la opción Multiviews en un directorio y crea 4 archivos:
example.es.html
example.en.html
example.html.gz
Por un mensaje distinto en cada archivo. Usa about:config, y luego cambia los
valores de network.http.accept-encoding y intl.accept_languages .

Ejcución de archivos
Los archivos HTML pueden incluir etiquetas que indiquen al servidor que deben
ejecutar Server Side Includes (SSI), tales como.

<!--#include file="filename.html" -->

264

http://localhost/link/link.html

Para permitirlo, las directivas Options Includes y Options IncludesNOEXEC

(esta última es más segura y restringe la ejecución de comandos en el servidor).
Actualmente se usan muy poco, en favor de otras tecnologías como React, JS y
demás.

Por su parte, Options ExecCGI permite ejecutar scripts CGI, aunque estos son
proclives a vulnerabilidades y son poco escalables, por lo que actualmente se usan
otras tecnologías como PHP y JS.

265

5. Configuración de directorio
Una función muy conocida de Apache es la utilización de archivos de
configuración de directorio, comúnmente llamados archivos .htaccess , pues es
el nombre por defecto de estos archivos.

La configuración de éstos viene también dada en apache2.conf . En concreto, se
establece el nombre que toman estos archivos, y se imposibilita que sean vistos
directamente:

AccessFileName .htaccess #Nombre de los ficheros de configuración
 #Ejemplo para varios fich. de conf: AccessFileName .htaccess .ht_

<FilesMatch "^\.ht">
 Require all denied #Restringe acceso a ficheros que empicen por .ht
</FilesMatch>

AllowOverride
Esta directiva es la permite o deniega el uso de archivos de configuración de
directorio. Hay que recordar que, en el fichero apache2.conf, se eliminaba la
posibilidad del uso de estos archivos en todo el sistema:

#Esto es parte del contenido del fichero por defecto de apache2.conf
<Directory "/">
 AllowOverride None
 ...
</Directory>

Por tanto, para permitir el uso de archivos .htaccess , en un directorio concreto,
será necesaria la inclusión, en apache2.conf (o en algún fichero incluido por
éste), de una directiva <Directory> que contenga un AllowOverride All o
similar.

El funcionamiento de estos ficheros es sencillo. Cuando un directorio contiene un
fichero de este tipo (si se permiten este tipo de ficheros en tal directorio), las
directivas contenidas en él se aplican a ese mismo directorio, como si estuvieran
escritas en apache2.conf .

Por ejemplo, si quisiramos habilitar índices en el directorio /var/www/html/dir ,
y sus subdirectorios, tendríamos la opción de permitirlos usando una directiva

266

<Directory> en apache2.conf, o bien podríamos permitir el uso de .htaccess

en dicho directorio, y allí incluir dicha directiva.:

(1) Permitir índices directamente (2) Permitir el uso .htaccess y, allí,
permitir los índices.

apache2.conf
<Directory /var/www/html/dir>

Options Indexes
</Directory>

apache2.conf
<Directory /var/www/html/dir>

AllowOverride All
</Directory>

/var/www/html/dir/.htaccess
Options Indexes

Las directivas de un directorio sobreescriben, en caso de solaparse, las directivas
de directorios padres o anteriores. Todas estas directivas sobreescriben a las del
fichero de configuración de Apache. En todo caso, la directiva AllowOverride es
ignorada si es encontrada en un archivo de configuración de acceso.

La documentación para estos archivos puede encontrarse en
https://httpd.apache.org/docs/2.4/howto/htaccess.html.

Ej. 43: Establece que los archivos de configuración se van a llamar .htac ,
en vez de .htaccess .
Crea un directorio llamado sobreescrtura que cuelgue de la raíz de archivos
que sirve el servidor web, en el archivo de configuración de Apache, establece
que, en ese directorio y sus subdirectorios, se permita los archivos de
configuración de directorio.
Emplea el navegador para acceder a ese directorio (la URL a poner terminará
en /), y verás que se mostrará el listado del directorio, aunque este listado
mostrará que existen archivos. Dirígete al “Parent Directory” y explica qué
sucede y por qué.
Crea un archivo .htac con el contenido Options FollowSymLinks . Vuelve a
cargar el directorio en en navegador y explica por qué no puede verse el
directorio.

267

https://httpd.apache.org/docs/2.4/howto/htaccess.html

Ej. 44: Busca en la documentación de Apache el cómo se sobreescriben las
directivas de directorios entre si y con el archivo de configuración de
Apache2.

Ej. 45: Crea el subdirectorio lista dentro del directorio sobreescrtura , y
añade un archivo .htac , en el directorio lista , en donde haya una directiva
Options +Indexes . Prueba a acceder al directorio /sobreescritura/lista

en el navegador.

Ej. 46: Modifica la configuración para que se permitan archivos .htaccess

(además de los .htac). Crea un enlace simbólico hacia lista , llamado
list . Comprueba que funciona en enlace.

Crea otro enlace dentro de lista , llamado sobre-esc , hacia el directorio
padre. Comprueba si funciona o no.

268

6. Configuración inicial
Inicialmente, en el fichero de configuración maestro se establecen, inicialmente,
una serie de restricciones a los directorios del sistema. Ello se hace a través de
varias directivas <Directory>. Por ejemplo, la primera que nos encontramos es:

<Directory "/"> #Hdirectorio del sistema, no web
Options FollowSymLinks #Hab. enlaces simb.
AllowOverride None #No permite .httpaccess
Require all denied #Restringe acceso a todos

</Directory>

En ella, se establece que, en el directorio / y todos sus subdirectorios (es decir,
en todo el sistema), se establece que (1) se permiten los enlaces simbólicos (2) no
se permite el uso de .httpaccess, y (3) nadie tiene acceso a esos archivos. Esta
última directiva no es del core, sino del módulo mod_authz_core, habilitado por
defecto.

Más abajo, se muestran directivas que permiten el acceso (Require all granted)
a los siguientes directorios:

• /usr/share . Esto es necesario para que los módulos accedan a diversos
programas del sistema, como programas para ejecutar scripts.

• /var/www/ . Hemos de dar acceso a este directorio para que puedan servirse los
ficheros que hay en él. Observa que el directorio base del servidor es
/var/www/html . Esto es así para permitir acceso a ficheros de forma indirecta.

Por ejemplo, era muy típico situar ficheros de script en /var/www/cgi , de
forma que no se pudieran cargar directamente por un navegador, pero si
pudieran ser llamados por páginas situadas bajo /var/www/html , que si podían
ser solicitadas por el navegador.

• /srv/ . Aquí se sitúan los diversos servidores virtuales.

Ej. 47: Con la configuración inicial de apache2.conf , ¿está permitido el
acceso al directorio /srv/) ¿Por qué?

269

Ej. 48: Haz que /var/www/host/ y sus subdirectorios sigan los enlaces
simbólicos (FollowSymLynks). Dentro de /var/www/host/ , todos los
directorios list, pero no en sus subdirectorios, solo se permitirá hacer listado
de directorio (Indexes), no enlaces u otra cosa, y los ficheros que empiecen por
punto serán inaccesibles (require all denied) ¿Qué mods deberán estar
activos?

Ej. 49: Haz que el directorio /var/www/html tenga las opciones activas de
seguir enlaces y listado de directorio, exclusivamente. Haz que todos los
directorios que cuelguen de dicho directorio no puedan seguir enlaces.

Ej. 50: En /var/www/host/home , pero no en sus subdirectorios,
permitiremos .htaccess (AllowOverride All). En esos .htaccess, creamos una
configuración para que ese directorio y sus subdirectorios solo sean accesibles
por el usuario correspondiente (/var/www/host/home/sam requerirá el usuario
sam). Estos .htaccess no serán accesibles (require all denied).

Ej. 51: Haz que las URLs que empiecen por /user/ sean accesibles. Sin
embargo, si, dentro de /user/ , se accede a ficheros que empiecen por punto,
solo serán accesibles desde localhost o desde 192.168.10.0/24 .

Ej. 52: En los directorios home y todos sus subdirectorios, debemos
establecer que solo pueden establecerse las opciones de Multiviews y de seguir
los enlaces que sean de la misma propiedad. Luego, en los subdirectorios
directos de todos los directorios llamados home , deseamos asegurarnos que no
se pueden listar los directorios.

Ej. 53: Haz que los subdirectorios directos de todos los directorios llamados
home , deseamos asegurarnos que no se pueden listar los directorios.

270

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 3: 3:

Gestión deGestión de
módulos ymódulos y

configuracionesconfiguraciones

1. Configuración y activación
Un servidor web es, básicamente, un programa que escucha en una serie de
puertos y espera que un navegador, u otro tipo de cliente, establezca una
conexión en alguno de esos puertos. Entonces, usando el protocolo http o https,
el cliente solicita una ruta web, y el servidor le transmite el fichero que
corresponda con esa ruta. Si ese fichero no está, o la ruta no corresponde a un
fichero (corresponde, por ejemplo, a un directorio), un servidor web básico
enviará un error 6 .

Un módulo es un componente que añade funcionalidades al servidor web.
Apache viene con varios de ellos activados por defecto.

Por su parte, una configuración es, simplemente, un conjunto de directivas,
normalmente destinadas a un mismo fin (mejorar la seguridad, añadir una
funcionalidad o un conjunto de funcionalidades asociadas entre si, etc.).

Directorio
Por defecto, los módulos y las configuraciones activos en un momento dado se
encuentran en el subdirectorio mods-enabled , y conf-enabled , dentro del
directorio de configuración de Apache (en definitiva, en /etc/apache2/mods-
enabled y /etc/apache2/conf-enabled).

Recuerda que, en el fichero de confguración maestro de Apache2 (llamado
apache2.conf en sistemas Debian), se realiza un IncludeOptional de todos

ficheros .conf y .load que se hallen en el directorio de mods, y todos los
.conf del directorio de configuraciones:

IncludeOptional mods-enabled/*.load
IncludeOptional mods-enabled/*.conf
IncludeOptional conf-enabled/*.conf

En el directorio /etc/apache2/mods-enabled/ podemos ver los módulos activos
en un momento dado, mientras que en el directorio /etc/apache2/mods-
available/ , están todos los módulos disponibles. Así, un módulo activo estará

en ambos directorios, mientras que uno no activo pero disponible (instalado),

6 Realmente, Apache2 recién instalado, no devuelve error si se solicita un
directorio, puesto que el módulo mod_autoindex viene activado por defecto.

273

estará solo en el mods-available . Realmente, el contenido de mods-enabled son
enlaces al directorio mods-available .

De forma similar, conf-enabled tendrá las configuraciones habilitadas, mientras
que conf-available tendrá las disponibles. El primero de éstos también se
trataría de enlaces al segundo.

Activación
La activación de un módulo en apache2 se realiza a través del comando a2enmod

seguido por el nombre del módulo (sin el prefijo mod_). De forma similar se
realiza con las configuraciones con a2enconf :

a2enmod «nombre_del_módulo»
a2enconf «nombre_de_la_configuración»

Este comando crea los enlaces en mods-enabled que apuntarán a mods-
available . Observa que, si el módulo no está instalado, no podrá ser activado.

De igual forma funcionarán las configuraciones.

Desactivación
La desactivación de un módulo se realiza a través de a2dismod seguido por el
nombre del módulo (sin el prefijo mod_). Para configuraciones se realiza con
a2disconf :

a2dismod «nombre_del_módulo»
a2disconf «nombre_de_la_configuración»

Esto eliminará los enlaces del módulo en mods-enabled , dejando intactos los
ficheros de mods-available , y de igual forma con las configuraciones.

Ej. 54: Desactiva el módulo status . Escribe el comandos necesario para
ello. Indica qué sucede ahora cuando abres la localización /server-status .
¿Funciona el comando apache2ctl status ?

Ej. 55: Activa el módulo info ¿Qué cambios se realizan en el directorio
mods-enabled ? ¿Qué localización web se activa y qué información

proporciona?

274

Ej. 56: En una instalación por defecto de apache ¿Está el módulo ldap

disponible para ser activado? ¿Y el módulo php? ¿Cómo lo sabemos?

275

2. Módulo mod_alias
Este módulo permite asociar una localización web concreta con un fichero o
directorio que se encuentre en otro lugar. Ello se hace con la directiva Alias:

Alias «Localización Web» «Ruta de Destino»

Por ejemplo, supongamos un servidor web tan solo contiene, en el directorio
/var/www/html el fichero por defecto index.html . Podríamos hacer que,

cuando un navegador u otro cliente pidiera la localización web home.html , se le
sirviera ese fichero index.html , en vez de dar error. Ello se realizaría de la
siguiente forma:

Alias /home.html "/var/www/html/index.html"

La directiva Alias también funciona cuando «Ruta de Destino» está fuera del
directorio raíz de documentos (/var/www/html), siempre que se tenga acceso a
dicha ruta (las restricciones de acceso iniciales permiten acceso a /var/www y
/usr/share).

También es posible que, «Ruta de Destino» sea un directorio. En este caso, todo
bajo ese directorio sería afectado por un alias, como un directorio más.

Redirect
Esta directiva le informa al cliente que debe pedir la dirección web indicada. Por
ejemplo:

Redirect /example “www.example.com/example”

Cuando un navegador solicita la ruta /example en nuestro servidor, éste le
informará que lo siguiente que deberá hacer será abrir una conexión con
www.example.com/example . Se trata de una redirección, por lo que la conexión se

cierra sin más resultado y el navegador ya hará una nueva petición a esa nueva
dirección.

Ej. 1: Crea, en el sistema de ficheros anfitrión, el directorio
/var/www/recursos . Y dentro, otro directorio llamado iconos . Copia el logo

276

http://www.example.com/example
http://www.example.com/

de ubuntu (/usr/share/apache2/icons/ubuntu-logo.png) a ese último
directorio.
Modifica alias.conf para establecer la localización web /iconos hacia ese
directorio. Comprueba, poniendo en un cliente (navegador, etc.) la
localización /iconos/ubuntu-logo.png , y que aparezca la imagen.
Escribe las directivas incluidas en el archivo alias.conf .

Ej. 2: Crea el directorio /var/www/recursos/error/ . Dentro, crea un
fichero web html5 mínimo, de nombre error404.html que tan solo muestre
el siguiente mensaje: 404. No encontrado .
Configura alias.conf para que, cuando un cliente pida la localización web
/no_encontrado.html , se le sirva el archivo antes especificado.

Escribe las directivas incluidas en el archivo alias.conf .

Ej. 3: Con la configuración actual, ¿es posible acceder a través del
navegador al contenido del directorio /var/www/recursos ¿Por qué?

Ej. 4: Establece una directiva, en alias.conf , para que la localización web
/google redirija a www.google.com. Estribe la directiva creada.

277

http://www.google.com/

3. Módulo mod_autoindex
Estando éste módulo activo, cuando un navegador u otro cliente solicitan una
localización que corresponde a un directorio, en vez de enviar un error, se sirve
una web que muestra el contenido del directorio. Dicha página web servida no
existe realmente, sino que se crea en ese momento, sin grabarse en ningún lado.

El fichero de configuración autoindex.conf define varios aspectos de cómo se
construye esta web.

Iconos
La directiva AddIcon define la imagen a usar para fichero de una o más
extensiones, mientras que AddIconByType define el icono para los archivos de un
tipo MIME concreto. Además, existe la directiva DefaultIcon , que define el
icono a usar cuando ninguna de estas directivas es aplicable al fichero en
cuestión:

AddIconByType (TXT,/icons/text.gif) text/*
AddIcon /icons/layout.gif .html .shtml .htm .pdf
AddIcon /icons/text.gif .txt
DefaultIcon /icons/unknown.gif

Cabecera y pie
Es posible definir la cabecera y el pie que se muestran en la menciona web. Con
las siguientes directivas, el servidor busca el fichero los ficheros con ese nombre.
En este caso, si encuentra el fichero HEADER.html , sustituye la cabecera por
defecto (Index of «dir»), y si encentra el fichero README.html , sustituye la nota
al pie por defecto.

ReadmeName README.html
HeaderName HEADER.html

Estos ficheros son relativos al directorio que se está mostrando. Si poseen una
barra al principio, se mostrará un fichero relativo a la raíz de documentos.

278

Ej. 5: Bájate de Internet tres iconos relativos a carpeta (folder) y texto (text)
y página web (layout), cuyo tamaño sea alrededor de 20x20. Copialos en el
directorio /var/www/recursos/iconos , creado en anteriores ejercicios.
Modificando autoindex.conf , cambia el aspecto de los textos, los ficheros
web y las carpetas producidos por autoindex para que aparezcan los iconos de
ese directorio.
Crea un directorio llamado dir en la raíz de documentos (en definitiva,
/var/www/html/dir). Comprueba que se ven esos documentos usando ese

directorio: ¿qué dirección web tendrás que usar?
Escribe también las directivas modificadas en autoindex.conf .

Ej. 6: Modificando autoindex.conf , establece que el nombre del fichero de
cabecera sea _heading.html . Luego, crea un fichero para que el directorio
dir antes creado tenga una cabecera de la forma: Contenido del

directorio: . Escribe el cambio hecho en autoindex.conf .

Ej. 7: Modifica autoindex.conf para que todas las páginas de directorio
muestren, bajo el contenido del directorio (es decir, al pie de página) un
enlace (<a href …) con el texto <home> que dirija a la página de inicio.
Escribe el cambio hecho en autoindex.conf .

279

4. Módulo mod_deflate
Éste módulo establece los tipos de fichero que serán susceptibles de ser
comprimidos antes de enviarse al cliente. El protocolo HTTP permite este proceso
como medida de aumentar la eficiencia de la red.

Normalmente, los ficheros que mejor se comprimen son los ficheros que están
codificados con texto como, por ejemplo, los archivos web (html, css, etc.), los
archivos de texto (txt), los archivos de código fuente (javascript, de otros
lenguajes, etc.) o los archivos XML.

Sin embargo, otros ficheros que, de forma natural, vienen ya codificados, poseen
malos ratios de compresión, y son especialmente poco indicados de incluirse aquí.
Estos archivos son, por ejemplo, los archivos multimedia o los archivos
comprimidos.

Filtro con DEFLATE
Por ejemplo, la directiva siguiente indica que los archivos de tipo application/xml
serán manejados con DEFLATE.

AddOutputFilterByType DEFLATE application/xml

Ej. 8: Abre el archivo deflate.conf y observa los tipos MIME que el servidor
comprime. Menciona otro tipo de ficheros que sería bueno de incluirse aquí, y
crea una directiva para usarla

Ej. 9: Comprueba, mirando la configuración, si los archivos HTML son
comprimidos. Comprueba en el navegador que es así. Comprueba si google
realiza la compresión de los HTMLs.
Nota: para comprobar que se ha usado compresión, puedes ver si la cantidad
de bytes trasferidos es menor que el tamaño del archivo.

280

5. Módulo mod_dir
Éste módulo hace que, cuando un navegador u otro cliente solicitan un recurso
que resulta ser un directorio, se sirva en su lugar un fichero contenido en el
directorio solicitado.

El nombre del fichero a servir se define en dir.conf . Inicialmente, éste fichero
solo contiene una directiva DirectoryIndex (definida por el propio módulo
mod_dir), y describe el orden de los ficheros que se busca cuando el cliente pide
una localización que es un directorio:

DirectoryIndex index.html index.cgi index.pl index.php
 index.xhtml index.htm

En este caso, el servidor Apache, si se le pide una localización web como /dir , y
resulta que esa localización es un directorio, entonces busca en
/var/www/html/dir/index.html . Si no encuentra ese fichero, lo intenta con el
cgi , el pl , el php , el xhtml y, por último, el html . Si ninguno de ellos está

disponible, es entonces cuando se envía un error o, si el módulo mod_autoindex
está activo, se pasa el control a dicho módulo.º

Ej. 10: Usa la directiva Directory para que cuando un cliente (un
navegador web, etc.) solicite el directorio /dir o cualquiera de sus
subdirectorios, se muestre por defecto la página dir.html contenida en el
directorio solicitado (en vez de index.html). Si dir.html no estuviera
disponible, el servidor deberá devolver dir.php y, si ésta tampoco estuviera
disponible, devolverá dir.htm .
Escribe las directivas creadas para ello.

Ej. 11: En /var/www/html/dir , crea un directorio llamado subdir que
contenga el fichero dir.html . Dicho fichero contendrá un fichero html5 con
el mensaje Esto es dir.html .
Teniendo en cuenta la directiva del ejercicio anterior, ¿qué resulta si un
navegador solicita la ruta /dir/subdir/ (la cual es un directorio)? ¿Por qué?

Ej. 12: Crea otro fichero, también en el directorio subdir , llamado
dir.htm , y que contenga el mensaje Y esto es dir.htm .

281

Teniendo en cuenta la configuración de los ejercicios anteriores, ¿que se
mostrará si un navegador solicita ahora la ruta /dir/subdir/ ? ¿Por qué no
se muestra el contenido del otro fichero?

Ej. 13: Con la configuración inicial, en la que tanto mod_autoindex como
mod_dir están activos, y la configuración de mod_dir es la inicial.
¿Es posible que el servidor nos sirva una web que sea creada usando
mod_autoindex en la que dentro exista un archivo con nombre index.html?

282

6. Módulo mod_mime
Determina varios aspectos de un fichero, que son:

• Tipo de contenido (Content-Type): Define el tipo MIME del archivo (por
ejemplo, text/html, image/png, application/json).

• Codificación (Content-Encoding): Especifica si el archivo está comprimido o usa
una codificación especial (por ejemplo, gzip).

• Idioma (Content-Language): Indica el idioma del archivo (por ejemplo, en, es).

• Charset (Charset): Define la codificación de caracteres, como UTF-8 o
ISO-8859-1.

Este módulo también gestiona ciertos handlers para archivos ejecutables, es decir
para CGI y SSI.

MIME
Respecto a la gestión de mimes, la directiva TypesConfig apuntará al fichero
tipos mimes del sistema. También podemos usar AddType para añadir un mime,
o sobreescribirlo si éste ya se encontraba en el fichero de mimes del sistema:

TypesConfig /etc/mime.types
#AddType application/x-gzip .tgz

Ej. 14: Ve al fichero de tipos mime del sistema y mira a qué mime están
asignados los ficheros .tgz. Crea un archivo tgz cualquiera y descargalo con
un navegador. Observa la cabecera y el mime declarado en la cabecera de
respuesta ¿cuál sería en caso de que #AddType application/x-gzip .tgz no
estuviera comentado?

Ej. 15: Indica qué módulo básico (de los vistos anteriormente) que hace uso
de los tipos mime para realizar alguna función específica.

283

Codificación
Mime también permite identificar codificaciones. Con las siguientes directivas,
cuando un cliente solicite un archivo .Z, Apache añadirá Content-Encoding: x-
compress en la cabecera de la respuesta. Este permite, a navegadores modernos,

descomprimir el archivo al vuelo y usarlo/mostrarlo directamente.

AddEncoding x-compress .Z
AddType application/x-compress .Z

Esta información puede usarse por otras directivas o por otros módulos para
realizar ciertas operaciones según el tipo de fichero (con AddOutputFilter,
AddHandler, etc.).

Idioma
En el fichero de configuración de mod_mime también se definen una serie de
idioma.

pagina.es.html para español.

AddLanguage es .es
DefaultLanguage nl

Con el anterior AddLanguaje , el sistema podrá identificar, por ejemplo, una
página como pagina.es.html con el idioma español, de forma que añadirá, a la
cabecera de respuesta Content-Language: es . Este comportamiento NO está
limitado a páginas web, también es posible aplicarlo a imágenes, archivos
comprimidos, scripts o todo tipo de ficheros.

Observa que este comportamiento está relacionado con la opción Multiviews ,
No es estrictamente necesario que esté activa Multiviews para que esta
funcionalidad funcione.

También es posible establecer un lenguaje por defecto (en caso de que no se
detecte ningún lenguaje conocido) pero, tal y como afirma la propia
configuración, es mejor no especificar lenguaje que hacerlo de forma incorrecta.

Ej. 16: ¿Qué sucede si no está activa Multiviews , pero si lo está esta
funcionalidad de AddLanguage ?

284

Ej. 17: ¿Tiene sentido crear imágenes distintas según el idioma en una web?
Nota: puedes mirar webs como https://www.peppercarrot.com/ para meditar
tu respuesta.

Charset
A veces, un fichero está codificado de cierta manera, aunque hoy día se usa casi
siempre UTF-8. Con la directiva AddCharset , hacemos que los archivos con una
extensión final sean devueltos con una cabecera que incluirá un Content-Type .
Por ejemplo:

AddCharset ISO-8859-1 .iso8859-1 .latin1

También es posible combinarlo con el idioma, aunque la extensión de charset
debe quedar al final. Así, por ejemplo, un archivo pagina.html.es.iso8859-1

tendrá, en su cabecera lo siguiente: Content-Type: text/plain;

charset=iso-8859-1 .

Ej. 18: Define el Conten-Type resultante para un archivo llamado
hola.html.es.utf-7?
Ej. 19: ¿Qué codificación tendrá un archivo que sea enviado con la
cabecera Content-Type: text/html; charset=cp-1251 ?

285

https://www.peppercarrot.com/

7. Módulo mod_reqtimeout
Este módulo establece límites de tiempo para la conexión del cliente. El fichero
de configuración reqtimeout.conf contiene:

RequestReadTimeout header=20-40,minrate=500
RequestReadTimeout body=10,minrate=500

Con la primera directiva, el cliente tiene 20 segundos para transmitir las
cabeceras y, por cada 500 bytes enviados, dispone de un segundo adicional. En
todo caso, si tarda más de 40 segundos, el servidor termina la conexión.

La segunda directiva tiene el mismo funcionamiento, solo que respecto a la
recepción del cuerpo de la transferencia (el fichero que se transmite en sí). En
este caso, solo se establece un límite de 10 segundos, con un incremento de 1
segundo por cada 500 bytes transmitidos.

Ej. 20: Escribe una directiva para establecer que el cuerpo de la conexión
tiene 8 segundos, como máximo 30, y se dispone de 1 segundo más por cada
750 bytes recibidos.

286

8. Módulo mod_status
Este módulo hace que el servidor, al ser preguntado por una localización web
previamente definida (inicialmente, /server-status), sirva una web que
muestra el estado del servidor.

Entre otras directivas que añaden más información (proxy, extended status), el
corazón del fichero de configuración status.conf es:

<Location /server-status>
SetHandler server-status
Require local
#Require ip 192.0.2.0/24

</Location>

Básicamente, define que la localización web /server-status es gestionada por el
Handler server-status (que es el que crea la página de estado). Dicha localización
solo es accesible por un usuario local, gracias a la directiva Require local .

Ej. 21: Con ifconfig, averigua la IP del interfaz de red del
ordenador/máquina virual (por ejemplo, 192.168.0.1). Escribe qué haría
falta añadir, dentro de Location, para que la página de estado sea accesible
por esa red. Escribe qué haría falta para permitir el acceso a la IP
93.184.216.34 (y solo a esa IP).

Ej. 22: Escribe qué haría falta cambiar para que la página web de estado
sea servida en la localización web /status , en vez de /server-status .

Ej. 23: Escribe las directivas necesarias para que la página web de estado
sea servida en /status y también en /server-status.

287

9. Configuración Security
Gestiona opciones de seguridad en el servidor. El contenido por defecto es el
siguiente:

ServerTokens OS #En los encabezados de respuesta HTTP, muestra solo el
 # nombre del servidor, su versión y el sistema operativo.
ServerSignature On #En las páginas de error o respuestas generadas
 # automáticamente, incluye la firma del servidor. Ej.:
 # Apache/2.4.41 (Ubuntu) Server at example.com Port 80
TraceEnable Off #Desactiva el registro de las llamadas al sistema, usado
 # para analizar errores o falta de rendimiento.
#RedirectMatch 404 /\.git #redirige los .git a error.
#Header set X-Content-Type-Options: "nosniff"
 #Indica los navegadores para que no procesen un archivo que tenga un
 # tipo de contenido distinto al especificado en el content-type.
#Header set Content-Security-Policy "frame-ancestors 'self';"
 #Solo permite que el contenido de la web sea incrustado en un iframe o
 # frame si la página que lo incluye es del mismo dominio.

288

10. Módulos y configs por defecto
Por defecto, Apache2 viene con varios módulos y configuraciones activados por
defecto. Inicialmente, los módulos y configuraciones activos, además de los ya
comentados son:

• Módulo access_compat. Aumenta el rendimiento del servidor, combinando y
compactando las directivas de acceso (elimina redundantes, o combina
varias reglas en una, etc).

• Módulos authX. Se usa para autentificar los usuarios debidamente.

• Módulo env. Permite controlar variables de entorno internas para pasarlas a
scripts.

• Módulo Filter. Permite que ciertos tipos de ficheros sean procesados de otra
forma. Introduce, entre otras, la directiva AddOutputFilterByType. Es
usado por otros módulos.

• Módulo mpm_event. Permite crear hilos para gestionar las peticiones,
liberando los procesos principales.

• Módulo negotiation. El servidor escoge uno entre varios elementos de
recursos, basándose en las preferencias del cliente. Por ejemplo, escoger
un recurso u otro según el idioma.

• Módulo setenvif: Habilita variables de entorno según la petición del cliente.

• En cuanto a configuraciones, están charset.conf, other-vhosts-access-log.conf.
serve-cgi-bin.conf y localized-error-pages.conf.

289

11. Instalación de módulos
Se realiza a través de los comandos típicos de instalación del sistema operativo.
En Ubuntu, por ejemplo, sería el comando apt. Tras instalar el paquete concreto,
debe de aparecer en mods-available, pudiéndose activar como cualquier otro
módulo.

Algunos módulos necesitarán programas adicionales, normalmente también
instalables según el mismo método.

Ej. 24: Usando apt-cache, busca un módulo para apache2 y dí cual el.

Ej. 25: Por defecto, el módulo php no está disponible para apache2. Busca
la forma de instalar dicho módulo y cómo activarlo. Documenta brevemente
los pasos realizados.
Nota: el módulo php necesita conectar con el programa php, que es posible
que deba ser instalado también. Se recomienda el uso de, como mínimo, la
versión php 8.1 o, a ser posible, la 8.3 (que posee grandes mejoras) o
posterior.

290

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 4: 4:

Host virtualesHost virtuales

1. Directiva VirtualHost
Hasta ahora, hemos visto que Apache2 es un proceso que escucha por una serie
de puertos establecidos en el fichero ports.conf (por defecto el 80). Cuando
cualquier máquina o proceso abre una conexión a cualquiera de esos puertos, y
pide (usando el protocolo http o https) un recurso, como por ejemplo,
www.example.com/dir/web.html , el servidor apache se queda con la segunda

parte, en este caso /dir/web.html . Apache busca y sirve ese documento o, si no
lo encuentra, envía un código de error. En un principio, parece ser que el
servidor apache ignora la primera parte (www.example.com).

Recuerda que el fichero de configuración apahe2.conf realizaba un
IncludeOptional a todos los ficheros .conf de sites-enabled:

IncludeOptional sites-enabled/*.conf

El contenido del fichero es el siguiente (se omiten, por brevedad, algunos
comentarios del fichero):

<VirtualHost *:80>
#ServerName www.example.com

ServerAdmin webmaster@localhost
DocumentRoot /var/www/html

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

#Include conf-available/serve-cgi-bin.conf
</VirtualHost>

Este fichero define, con la directiva DocumentRoot , que se usará como raíz el
directorio de sistema /var/www/html .

Ej. 1: Modifica el fichero 000-default.conf para que sirva los ficheros
contenidos en /var/www/apache. Abre un navegador y por la dirección
http://localhost/ ¿Qué sucede? ¿Por qué?
Nota: recuerda que, todo cambio en apache2.conf y/o sus ficheros incluidos,
necesita reiniciar el servidor para que dicho cambio se active.

293

http://localhost/

Ej. 2: Teniendo en cuenta la configuración anterior, crea los directorios y
ficheros necesarios para que http://localhost/ sirva una página web básica
donde, simplemente, se muestre el mensaje Funciona (u otro mensaje que
prefieras) ¿Qué ficheros y directorios son necesarios?

Habilitar y desabilitar hosts virtuales
De forma similar a como sucedía con los módulos, también existe un directorio
sites-available, que define los “sites” disponibles en el servidor apache. Podemos
escribir nuevos ficheros en tal directorio. Para habilitar un fichero de
configuración de “sites”, se usa el comando:

a2ensite «nombre_del_site»

Con ello, veremos que aparece, automáticamente, un nuevo enlace simbólico en
sites-enabled (dirigido al correspondiente fichero de sites-available). Esto

en similar a los que sucede con los módulos y las configuraciones.

Para desactivar un site, usamos:

a2dissite «nombre_del_site»

Tras lo cual, desaparecerá el enlace en sites-enabled , permaneciendo en
sites-available .

Ej. 3: Copia el fichero 000-default.conf, situado en sites-available, a otro
que se llame 001-init.conf. Habilita 001-init.conf y desabilita 000-
default.conf. Escribe los comandos de terminal usados para ello.

294

http://localhost/

2. Parámetros de Virtualhost
La directiva VirtualHost tiene un parámetro que indica las ips y los puertos a los
que se aplica. En caso de que varias directivas de virtualhost sean factibles, se
mira primero la directiva Servername y, si no coincide ninguna, la directiva
ServerAlias. Si ninguna coincide, se selecciona la directiva VirtualHost más
específica o, si no es posible seleccionar ninguna por.

Hosts por ServerName
El servidor Apache2 es capaz de servir múltiples dominios. Ello se realiza con la
directiva ServerName . Por ejemplo, en la configuración siguiente, se sirven dos
dominios: (1) www.example.com, cuya raiz de ficheros está en /var/www/ex , y
(2) www.example2.com, cuya raiz de ficheros está en /var/www/other .

<VirtualHost *:80>
ServerName www.example.com
DocumentRoot /var/www/ex

</VirtualHost>

<VirtualHost *:80>
ServerName www.example2.org
DocumentRoot /var/www/other

</VirtualHost>

De esta forma, cuando una navegador, u otro cliente, abre una conexión al
servidor en el puerto 80 y, pide www.example.com/index.html, se le
proporcionará el contenido de /var/www/ex/index.hml . Por otro lado, si pidiera
www.example2.org/index.html, se le proporcionará el contenido de
/var/www/other/index.html .

Si se pide cualquier otro dominio, entonces el servidor apache utilizará la primera
configuración que encuentro (en este caso, la de www.example.com.

Ej. 4: Establece las directivas para que www.asir00.net en
/var/www/apache y www.example.org en /var/www/html . Escribe las

directivas usadas.

295

http://www.example.com/

Nota: para hacer que los dominios anteriores apunten al propio PC, será
necesario editar /etc/hosts .

Ej. 5: Edita el fichero de hosts para que asir99.net apunte también al PC, y
solicita, en un navegador, la página www.asir99.net/ ¿qué página te muestra?
¿Por qué?

Hosts por IP/puerto
También es posible definir diversas configuraciones, dependiendo de la IP o del
puerto por el que procede la petición.

<VirtualHost 172.20.40.10:80>
 DocumentRoot "/www/example1"
 ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.*:80>
 DocumentRoot "/www/example2"
 ServerName www.example.org
</VirtualHost>

En este caso, todas las peticiones hacia el puerto 80 de la IP de nuestro servidor
172.20.40.10 serán tratadas por el primer virtualhost. Las peticiones hacia
cualquier dirección de nuestro servidor que esté en el rango 172.20.30.* (también
en el puerto 80), emplearán el segundo bloque.

Ej. 6: Configura el servidor apache para que escuche en los puertos 80 y
8080. Escribe las directivas necesarias para crear la siguiente configuración
(eliminando todas las otras configuraciones):
- Dirección externa : 80 → /var/www/com
- Dirección externa : 8080 → /var/www/org
- Localhost:80 → /var/www/html

296

Virtualhost por defecto
Puede usarse un Virtualhost _default_ , de forma que, para toda petición de
dominios que no estén explicitamente definido en otras directivas Virtualhost, se
use una configuración concreta. Por ejemplo:

<VirtualHost _default_:*>

 DocumentRoot "/var/www/default"

</VirtualHost>

Esta directiva es distinta a *:*, ya que solo será activa cuando ninguna otra sea
aplicable.

Ej. 7: Crea los directorios, ficheros y directivas necesarios para que el,
cuando el dominio solicitado no sea ni www.asir00.net, ni www.example.org ,
se use /var/www/error.

297

http://www.example.org/
http://www.asir00.net/

PPARTEARTE VI: VI:

PlataformasPlataformas

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 1: 1:

VirtualboxVirtualbox

1. Instalar VirtualBox

Instalación de prerequisitos
Para que VirtualBox funcione de forma completa, vamos a usar varios paquetes,
que pueden ser utilizados con:

sudo apt install virtualbox

La instalación de VirtualBox conlleva la instalación de las claves de Oracle.
Dichas claves se utilizan para firmar digitalmente los paquetes de software de
VirtualBox. Las claves de virtualbox son necesarias por los siguientes motivos:

• Verificación de Autenticidad: se asegura que el software que estás
descargando e instalando es el auténtico proporcionado por Oracle y no ha
sido alterado o comprometido de ninguna manera.

• Integridad del Software: se asegura que los paquetes de software no hayan
sido manipulados o dañados durante la transferencia. Cualquier cambio en el
paquete después de su firma sería detectado durante la verificación de la
firma, alertando al usuario sobre posibles problemas de seguridad.

• Seguridad de la Fuente: Al agregar las claves GPG de Oracle y su
repositorio a tu sistema, estás indicando a tu gestor de paquetes (APT en el
caso de Ubuntu) que confías en estos paquetes y que pueden ser instalados.
Esto previene advertencias y errores relacionados con la seguridad al
intentar instalar software de una fuente no verificada.

• Actualizaciones Seguras: Utilizar las claves y el repositorio oficial también
asegura que las futuras actualizaciones de VirtualBox provendrán de una
fuente confiable y segura, manteniendo tu sistema protegido contra software
malicioso o no autorizado.

301

Instalación del Extension Pack
Para instalar el Extension Pack, tan solo es necesario:

sudo apt install virtualbox-ext-pack

La instalación del Extension Pack proporciona diversas posibilidades en la
máquinas que se instalen:

• Soporte para USB 2.0 y 3.0: permite a las máquinas virtuales conectar
dispositivos USB 2.0 y 3.0, ofreciendo una mejor compatibilidad y
rendimiento con dispositivos USB.

• VirtualBox Remote Desktop Protocol (VRDP): proporciona soporte para el
protocolo RDP (Remote Desktop Protocol). Esto permite a las máquinas
virtuales funcionar como servidores RDP, a los que se puede acceder de
forma remota.

• Soporte para PXE Boot para Intel Cards: permite a las máquinas virtuales
arrancar desde una red usando el Entorno de Ejecución Pre-arranque (PXE)
con tarjetas de red Intel.

• Virtualización de E/S basada en hardware (VT-x/AMD-V): agrega soporte
para ciertas funciones de virtualización de hardware, mejorando el
rendimiento de las máquinas virtuales.

• Encriptación de discos virtuales: esta característica permite la
encriptación de discos virtuales utilizando el Algoritmo de Encriptación
Estándar (AES).

• Grabación de sesión de máquina virtual: permite grabar y reproducir la
actividad dentro de la máquina virtual, que puede ser útil para fines de
demostración o para diagnóstico de problemas.

302

2. Descargar ISO

Descarga la máquina
Descarga la máquina virtual de Ubuntu Server en
https://ubuntu.com/download/server.

Lo normal es descargar la versión del último Ubuntu LTS, en nuestro caso,
Ubuntu 24.04.01 LTS.

Verificar el fichero ISO
Debemos conseguir el fichero de SHA256SUMS de Ubuntu correspondiente a
nuestra versión. Esto puede conseguirse en http://releases.ubuntu.com/.
Descarga ese fichero SHA256SUMS en el mismo directorio del fichero “.iso”.
Luego, ejecuta, en dicho directorio el siguiente comando:

sha256sum -c SHA256SUMS

Te dirá si la suma de verificación coincide. Si no es así, se ha producido un fallo
en la descarga.

303

http://releases.ubuntu.com/
https://ubuntu.com/download/server

3. Crear máquina
Vamos ahora a crear una Nueva Máquina Virtual. Abre VirtualBox y pulsa, en el
menú de arriba, “Máquina → Nueva" para crear una nueva máquina virtual.

En el cuadro de diálogo que aparece, escribe el nombre que le quieras asignar a la
máquina virtual. Selecciona el ISO que descargarte y te debería detectar la el tipo
de sistema operativo ("Ubuntu 64 bits). Dale a continuar.

Parámetros de la máquina
Corrige los fallos en el nombre de la máquina anfitriona. Por el momento, no
instales las “Guest Additions”, por lo que no marques la opción. Finalmente, dale
a continuar

Pasará a la ventaja para configurar el número de MBs y CPUs. Para un entorno
de pruebas o ligero con Ubuntu Server basta con poner 1024MBs y 1CPU. Para
sistemas como Ubuntu Desktop deberían doblarse ambos valores, quizás más
memoria para un Windows. Selecciona los valores deseados y dale a continuar.

En la ventana de disco, deberás crear un disco para el sistema operativo a
instalar. Lo normal es usar un disco de tamaño varible aunque, se se conoce el
tamaño que se va a necesitar, un tamaño fijo pequeño puede tener ligeras
ventajas al rendimiento. Para Ubuntu Server, un disco variable con 25GB debería
ser suficiente. Finalmente dale a continuar.

En la siguiente pantalla, revisa los datos y dale a terminar. El sistema se instalará
automáticamente.

Instalación de la máquina
Selecciona el idioma y selecciona descargar el entorno de instalación nuevo.

Selecciona el interface propuesto y configura el proxy (ninguno en nuestro caso).
Se descargarán paquetes de instalación y pasará a la ventana de selección de
disco.

304

Selecciona el disco entero, revisa los datos y dale a continuar, tras lo que te
pedirá el nombre de usuario, contraseña y demás, y pulsa continuar.

Deja sin seleccionar la opción de Ubuntu Pro, de OpenSSH y demás paquetes.
Finalmente, la instalación empezará.

305

4. Guest Additions
Son un conjunto de herramientas y controladores a instalar en la máquina
invitada que proporcionan, entre otras mejoras, una mejor integración de ratón,
teclado, portapapeles, y mejoran el rendimiento y la conectividad de red.

Insertar CD con los ficheros de la GuestAdditions
Primero, debemos hacer que la máquina anfitrión tenga disponible el ISO de las
guest additions, para poder proporcionárselo a la máquina invitada. Para ello,
instalamos, en la máquina anfitrion, el siguiente paquete.

sudo apt install virtualbox-guest-additions-iso

Ahora, en la máquina virtual, ve al menú de arriba, y selecciona Dispositivos
→ Insertar imagen de CD de las «Guest Additions» . En ese momento es

como si hubiéramos insertado, en la máquina invitada un dispositivo un USB o
CD que contiene los ficheros de las Guest Additions.

Sin embargo, en Ubuntu Server, no se “automontan” los dispositivos, es decir, que
si insertamos un USB, un CD u otro dispositivo, éste pasa a estar disponible, pero
no accesible de forma automática. Podemos montar el CD recién insertado con
los siguientes comandos:

sudo mkdir /media/cdrom
sudo mount /dev/cdrom /media/cdrom

Esto lo que hace es crear un directorio donde se accederán los ficheros del CD
(media/cdrom). En Linux, los dispositivos suelen montarse en directorios que
están en /media . Luego, realiza el montaje del dispositivo cdrom que está
dentro del directorio dev , que es donde están todos los dispositivos. (que
realmente es un enlace a /dev/sr0).

Instalar las GuestAdditions
Primero, vamos a preparar el sistema para la instalación. Debemos instalar los
paquetes de gcc, make, perl y bzip2,

306

sudo apt update
sudo apt upgrade
sudo apt install gcc make perl bzip2 build-essential module-assistant
sudo m-a prepare

Finalmente, accedemos al directorio que contiene el contenido de las Guest
Additions, que en nuestro caso ha sido /media/cdrom , y ejecutamos el comando
de dichas Guest Additions:

cd /dev/cdrom
sudo ./VboxLinuxAdditions.run

El proceso tarda un poco en terminar, puesto que tiene que compilar los kernels,
aparte de la copia de archivos y configuración.

Reinicia la máquina invitada para que las Guest Additions empiecen a funcionar.

Sudo shutdown -r now

307

5. Configurar la red
Para poder ver los interfaces de red en consola debemos instalar un paquete,
llamado net-tools :

sudo apt intall net-tools

Con esto, podremos, por ejemplo, ver los interfaces de red:

ifconfig

la cual nos mostrará todos los interfaces de red habilitados.

Vamos a poner otra configuración. En la máquina virtual, ve a Dispositivos →
Red → Preferencias de la red , y aparecerá una ventana con la configuración

de la red.

Establece Conectado a a Adaptador puente , y selecciona, justo más abajo, el
interface de la máquina anfitriona usado para conectar a la red. Puedes verlo
abriendo, en la máquina anfitriona, una terminal, y usando el mismo comando
ifconfig .

Reinicia, usando el comando shutdown, y comprueba que la interfaz ha cambiado
(usando, de nuevo, ifconfig).

308

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 2: 2:

InstalarInstalar
WordpressWordpress

1. Apache2
En la máquina invitada, instala Apache2. El servidor debe tener varios módulos
activos:

• mod_rewrite: necesario para implementar las "permalinks" de WordPress.

• mod_alias: habilita redireccionamientos y rutas de archivos.

• mod_deflate o mod_gzip: para el envío comprimido de archivos, mejorando
la velocidad de carga. Esto requiere instalar también mod_filter.

• mod_headers: para controlar encabezados HTTP.

• mod_expires: Para la gestión de caché de navegador mediante encabezados
de expiración.

• mod_mime: para asignar extensiones de archivo a tipos MIME.

• mod_ssl: para implementar HTTPS.

De los anteriores, el único imprescindible es mod_rewrite.

Tras instalar Apache2, comprueba que funciona: desde la máquina anfitrión, pon
la dirección de red de la máquina invitada en un navegador, y debería mostrarse
la web de bienvenida de Apache2.

311

2. Instalación de PHP
Instala también el módulo de PHP, empleando, en la máquina invitada, tanto el
sistema php como el módulo que conecta apache con php y la base de datos.

sudo apt-get install php libapache2-mod-php php-mcrypt php-mysql

Comprueba que está instalado creando una página php:

<?php
 phpinfo();
?>

En php, deben estar instalados los siguientes módulos:

• mysqli o mysql: para conectar con mysql o mariadb..

• gd: para la manipulación de imágenes.

• curl: para varias funcionalidades de red.

• xml y json: permiten el procesamiento de datos XML y JSON.

• Mbstring: para soporte de caracteres multibyte.

• Zip: para descomprimir y comprimir archivos.

Deberás localizar qué paquetes del sistema (que se instalarán con apt)
corresponden a los módulos de arriba.

312

3. Instalar MariaDB
 Instala, en la máquina virtual, MariaDB:

sudo apt install mariadb-server

Inícialo y habilítalo:

sudo systemctl start mariadb
sudo systemctl enable mariadb

MariaDB incluye un script de seguridad para cambiar algunas de las opciones
predeterminadas menos seguras: :

sudo mysql_secure_installation

Lo anterior debería permitirte establecer la contraseña de la base de datos.
Finalmente, accede a la base de datos con:

sudo mysql -u root -p

Crea una base de datos para Wordpress

CREATE DATABASE wordpress_db;
CREATE USER 'wordpress_user'@'localhost' IDENTIFIED BY 'password';
GRANT ALL PRIVILEGES ON wordpress_db.* TO 'wordpress_user'@'localhost';
FLUSH PRIVILEGES;
EXIT;

sustituye wordpress_user y password por unos a tu elección (no deben quedarse,
bajo ningún concepto, esos nombres).

313

4. Despliega Wordpress
Cambia, si no lo estabas ya, en la máquina invitada, al directorio de Apache2, y
descarga la última versión de wordpress y sube los ficheros al directorio
/var/www/html de la máquina invitada. Para descargar un archivo, puedes usar
wget .

Si necesitas descomprimir un archivo, puedes utilizar el siguiente comando:

sudo tar xzf archivo_a_descomprimir.tar.gz

Establece que todos los archivos y directorios allí contenidos, incluidos los
subdirectorios, tengan el usuario y grupo www-data:www-data .

sudo chown -R www-data:www-data /var/www/html/wordpress/

Finalmente, establece los permisos de todos esos ficheros a 755:

sudo chmod -R 755 /var/www/html/wordpress/

Fichero de configuración de Wordpress
Copia el fichero de ejemplo de Wordpress y copialo a wp-config.php :

cd /var/www/html/wordpress
sudo cp wp-config-sample.php wp-config.php

Cambia las líneas que definen DB_NAME, DB_USER , y DB_PASSWORD con los
valores adecuados de la base de datos.

314

5. Instala Wordpress
Finalmente, con un navegador, pon la dirección de la máquina invitada, y sigue
los pasos de instalación.

315

6. Configuración de red
Para configurar la red debemos instalar un paquete, llamado net-tools :

sudo apt intall net-tools

Con esto, podremos, por ejemplo, ver los interfaces de red:

ifconfig

la cual nos mostrará todos los interfaces de red habilitados.

316

PPARTEARTE VII: VII:

HerramientasHerramientas

UUNIDADNIDAD D DIDÁCTICAIDÁCTICA 1: 1:

GitGit

1. Configuración
Tras instalar git (con sudo apt install git), debemos realizar una serie de
configuraciones iniciales para poder usarlo debidamente.

Niveles
En primer lugar, tenemos la configuración de sistema, que atecta a todos los
repositorios de un sistema. Esta configuración se almacena en /etc/gitconfig ,
C:\ProgramData\Git\config o similares. Cuando queremos establecer una

configuración como sistema deberemos usar la opción --system , lo que
posiblemente necesitará permisos de administrador. Para ver la configuración de
sistema podemos usar:

git config --system --list

Tenemos, por otro lado, la configuración global, que afecta a todos los
repositorios de un usuario. Para establecer una configuración como blobnal
debemos usar la opción --global Esta configuración se almacenará en
~/.gitconfig , C:\Users\«usuario»\.gitconfig o similar.

git config --global --list

Finalmente, podemos establecer una configuración para el repositorio local en el
que nos encontremos. Por defecto, cuando se establece una configuración (a
través del comando git config o similar), se establecerá en el repositorio
existente en el directorio donde nos encontremos.

git config --local --list

Para ver todas las configuraciones activas:

git config --list

321

Establecer, mostrar y borrar
Existen ciertos parámetros que podemos configurar, y lo haremos a nivel de
sistema, global o local. Por ejemplo, para establecer el parámetro color.ui al
valor always pondremos:

git config --system color.ui always //a nivel de sistema
git config --global color.ui always //a nivel global
git config color.ui always //a nivel local

para mostrar la configuración de un valor concreto usamos:

git config --system color.ui always //a nivel de sistema
git config --global color.ui always //a nivel global
git config --local color.ui always //a nivel localizar
git config color.ui always //el valor activo

Para borrar la configuración usamos:

git config --system --unset color.ui always //a nivel de sistema
git config --global --unset color.ui always //a nivel global
git config --unset color.ui always //a nivel local

Ej. 1: En linux, muestra la configuración de git a nivel de sistema. Luego,
también a nivel de sistema, establece a false la opción color.ui .
Finalmente, muestra, de nuevo, la configuración a nivel de sistema.

Ej. 2: Borra la configuración creada en el ejercicio anterior y vuelve a
mostrar la configuración a nivel de sistema.

Configuración personal
Antes de nada, hay que proporcionar nuestro email, nombre y apellido(s) a Git,
para que éste pueda identificar envíos de código hacia el repositorio remoto, de
forma que, en dicho repositorio remoto, toda línea de código estará identificada
por su autor. Para ello, empleamos los dos siguientes comandos:

git config --global user.name "«Nombre» «Apellido»"

322

git config --global user.email email@email.com

Para modificarlos se emplearían los siguientes:

git config --global --replace-all user.name "Nombre Apellido"
git config --global --replace-all user.email email@email.com

Ej. 3: Establece tu nombre, apellido y email a nivel global ¿por qué lo
hacemos a nivel global y no a nivel local o de sistema?

Ej. 4: Establece tu email a nivel de sistema, pero uno distinto al ejercicio
anterior. Emplea git config --list para ver cual prevalece. Finalmente,
borra el email a nivel de sistema.

Configuración operativa
En entornos Windows los finales de línea son marcados con el carácter LF, pero,
en los sistemas de repositorio, los finales de línea deben estar marcados por CRLF,
tal y como sucede en Linux. Para que git te realice la conversión automática se
puede usar:

git config core.autocrlf true

En sistemas Linux, como también usan CRLF para el fin de línea, este comando no
suele ser necesario.

También podemos habilitar la autocorreción, de forma que nos sugiera el
comando correcto cuando nos equivocamos al usar git:

git config --global help.autocorrect 1

Con lo siguiente, establecemos que, al iniciar un nuevo repositorio, la rama que se
cree por defecto que se llame main en vez de master.

git config --global init.defaultBranch main

323

mailto:email@email.com

Credenciales
Cuando realicemos ciertos accesos al repositorio remoto (push, clone en
repositorios privados, etc.) deberemos contar con permiso para ello. Git nos
preguntará el usuario y la contraseña de acceso al repositorio. Para evitar
insertarlos en cada operación, podemos guardar las credenciales en nuestro
sistema con el siguiente comando, de forma permanente (store), durante 15 min
(cache) o durante un tiempo concreto (cache –timeout).

git config credential.helper store
git config credential.helper cache
git config --global credential.helper 'cache --timeout=1800'

El gran problema de lo anterior es que las credenciales se almacenan sin cifrar en
~/.git-credentials . Para evitarlo, podemos usar GCM. Para ello, hay que

bajar la última versión dese https://github.com/git-ecosystem/git-credential-
manager/releases (puede bajar el deb e instalarlo con dpkg -i). Tras ello, puedes
usar:

git config credential.helper manager
git config credential.credentialStore cache

Primero, vamos a crear una clave privada y su correspondiente clave pública
empleando ssh (se guardarán en ~/.ssh). Utilizaremos el algoritmo Ed25519,
que más rápido y seguro que RSA. También añadiremos un comentario a la clave
pública para indicar el correo en cuestión:

ssh-keygen -t ed25519 -C "tuemail@example.com"

324

https://github.com/git-ecosystem/git-credential-manager/releases
https://github.com/git-ecosystem/git-credential-manager/releases

2. Iniciar un repositorio
Un repositorio tiene dos partes:

• Directorio local: contendrá los archivos del proyecto software que estemos
desarrollando en un directorio concreto.

• Repositorio remoto, que estará situado en un servidor remoto. A menudo, estos
repositorios tiene una interfaz web para poder configurarlos. Ejemplos de sitios
web que ofrecen repositorios remotos son GitLab o GitHub.

Ej. 5: Ve a GitLab y crea una cuenta. Una vez hecho eso, crea un
repositorio remoto público, en el que habrá, como mínimo, un fichero
README.md . El nombre del repositorio puede ser daw o cualquiera que se te

ocurra.

Podemos iniciar un repositorio partiendo de cualquiera de los extremos, pero los
pasos se diferenciarán entre uno y otro. En caso de tener un repositorio
remoto con código, realizaremos uno de los siguientes (el directorio remoto será
algo como https://gitlab.com/techurbana/daw.git/ o similar:

git clone «directorio_remoto»
git clone «directorio_remoto» «ruta_local»

En el primer caso, se creará un subdirectorio en el directorio local, con el nombre
del repositorio remoto (ej: con un repositorio remoto de
https://gitlab.com/techurbana/daw.git/ se creará un directorio daw . Con la

segunda opción se descargarán los archivos en el directorio especificado, que
debe estar vacío. Si nos situamos dentro del directorio y ejecutamos el siguiente
comando:

git remote -v

nos mostrará la dirección del directorio remoto en cuestión.

En caso de que el directorio local que tenga un código que queramos publicar
en un nuevo escritorio remoto, debemos realizar lo siguiente (será explicado más
adelante):

git init

325

git add .
git commit -m "First commit"
git remote add origin https://gitlab.com/techurbana/daw.git
git remote -v
git push -u origin master #O bien: main en vez de master.

Ej. 6: Crea un repositorio local, clonando el directorio remoto que antes has
creado.

326

3. Desarrollo en local
El repositorio local guarda siempre el estado del último commit, que son los
últimos cambios aceptados. Ese estado se llama HEAD.

Inicio cambios add commit

Repositorio
local

Directorio
de trabajo

Área de
índice

A partir de ahí, en nuestro proceso de desarrollo, realizamos diversos cambios en
los ficheros del código, empleando el editor o entorno que deseemos, guardando
los cambios en los ficheros. Al directorio que contiene el proyecto se le llama
directorio de trabajo.

En cualquier momento podemos seleccionar cualesquiera archivos del directorio
de trabajo y establecemos en el “stagin area” o área de índice, empleado git
add , así como quitarlo empleando git reset . Esto no mueve realmente

ficheros, tan solo le indica a git los ficheros que conforman ese área de índice.
Observa que los ficheros seleccionados para conformar este área no tienen por
qué ser todos los ficheros que hayamos modificado, tan solo los que conformarán
el siguiente estado aceptado.

Finalmente, aceptamos cambios seleccionados en el área de índice realizando un
git commit : esos cambios forman ahora parte del repositorio local, y el área de

índice se vaciará. Observa que el directorio de trabajo conservará también los
cambios de los archivos que no formaban parte del área de índice.

Trabajar con ramas
Como hemos visto antes, es posible estar realizando cambios en varias partes del
código, de forma que solo parte de esos cambios forma parte del próximo estado.

327

Esto puede ser debido a que estemos realizando diversas pruebas, pero también
puede ser debido a que estemos trabajando en varios cambios a la vez. Por esta
razón, y para conseguir un seguimiento más limpio de los cambios, se suele
trabajar con ramas.

checkout cambios merge A

Rama
principal

Rama A

Rama B

checkout cambios merge B

La rama principal del repositorio local se llama main (en antiguos repositorios
puede llamarse master). Partiendo de un estado en el que todos los cambios estén
aceptados, podemos crear una nueva rama y cambia a ella con git checkout .
Tras ello, realizaremos los cambios relativos a cierta nueva funcionalidad o
arreglo de errores, y realizaremos los commits que estimemos. Cuando queremos
fusionar los cambios con la rama principal, volveremos a la rama main con git
checkout y emplearemos un git merge para fusionar los cambios de la rama

creada con la rama principal. Podremos volver a cambiar a la rama creada y
realizar más cambios (fusionándolos posteriormente), o podemos borrar la rama
con git checkout , de forma que los cambios ya fusionados permanecerán en la
rama principal.

Podemos tener varias ramas activas, de forma que, al crear una rama, el estado
inicial de esa rama parte del estado de la rama principal, sin tener en cuenta los
cambios hechos en ramas no fusionadas.

Trabajar con varias ramas
Podemos crear varias ramas, lo más típico es que cuelguen de la rama principal.
Para crear una segunda rama nos dirigimos a la rama principal con checkout y
volvemos a hacer un checkout -b.

328

Hay que tener en cuenta que, cuando fusionamos dos ramas, ambas quedan
idénticas. Si, por ejemplo, fusionamos una rama con la principal, habiendo sido
esta cambiada (con un commit anterior en la rama principal o con un merge
anterior de otra rama), los cambios se fusionarán tanto desde la rama que estamos
fusionando hacia la principal como viceversa.

Actualización del remoto
El pull y el clone fusionan los cambios en el repositorio local con nuestros
cambios, mientras que el fetch actualiza el repositorio local.

El merge se encargará de fusionar los cambios realizados de nuestro directorio de
trabajo con los cambios en el repositorio remoto. Un pull realmente es un fetch
con un merge.

329

4. Área de índice
El área de índice consiste en seleccionar los ficheros que serán objeto del
siguiente commit, para conformar el siguiente grupo de cambios aceptados. Para
añadir ficheros al index, podemos realizar lo siguiente:

git add archivo
git add *.extensión
git add nombreCarpeta/
git add nombreCarpeta/*.extensión
git add nombreCarpeta/archivo
git add **/*.extensión

Los siguientes comandos afectan a todos los directorios. El primero, uno de los
comandos git más usados, añade al índex todos los ficheros modificados, creados
y eliminados. El segundo es igual, pero no añade los ficheros nuevos no
rastreados:

git add . #añade todos los archivos
git add -u #añade todos excepto nuevos no rastreados

Para eliminar ficheros del área índex podemos emplear reset . Podemos
emplear los mismos que con add , excepto el git add -u , que no tiene
contrapartida en reset :

git reset archivo
git reset *.extensión
git reset nombreCarpeta/
git reset nombreCarpeta/*.extensión
git reset nombreCarpeta/archivo
git reset **/*.extensión
reset #Elimina todos los archivos

Para saber qué archivos están en el área de Index, puedes emplear cualquiera de
los siguientes comandos, mostrando el segundo una información más compacta
que el primero:

git status
git status -s

330

Ej. 7: En el repositorio local, crea un directorio nuevo llamado source, y
dento crea un fichero nuevo (por ejemplo code1.js) y añade dicho fichero al
área de índice (hazlo desde el directorio base). Luego usa git status para ver
los archivos que están en dicho área.

Ej. 8: Ejecuta el comando git commit -m "new js files" . Crea otro
fichero dentro del directorio source (por ejemplo code2.js). Ejecuta git
add -u ¿por qué solo se mueve el área de índice el fichero code1.js?

Es posible cancelar los cambios tanto del área de trabajo como del área index, con
el siguiente comando:

git reset --hard

Para borrar los archivos y directorios nuevos no rastreados, de forma que
podamos restaurar el estado anterior, podemos usar:

git clean -fd

Es posible usar git clean -nd para saber cuáles son estos archivos y directorios
nuevos no rastreados.

Ej. 9: Modifica alguno de los archivos creados y crea un fichero y algún
directorio nuevo. Luego cancela todos los cambios.

331

5. Commit
Cuando queremos aceptar los cambios hechos por los distintos archivos que están
en el área de índice, deberemos hacer un commit. Cada commit debe llevar un
mensaje que describa los cambios realizados (un fix sobre cierto bug, una
optimización de una función, etc.). Para realizarlo, usaremos:

git commit -m "«Mensaje»"

También tenemos disponible un comando que añade todos los archivos excepto
los nuevos no rastreados (como git add -u), y luego realiza el commit:

git commit -am "Mensaje"

Si queremos editar el mensaje del último commit, podemos escribir:

git commit --amend -m "Nuevo Mensaje"

Finalmente, es posible que no hayamos incluido algún archivo en el último
commit, o que hayamos incluido uno que no debiéramos. O también es posible
que queramos cambiar algo en algún fichero. Podemos editar los ficheros, y/o
usar git add y/o git reset, y luego usar el siguiente comando para arreglar el
error:

git commit --amend --no-edit

Deshacer cambios
Podemos deshacer todos los cambios del último commit con uno de los siguientes:

git reset --soft HEAD~1
git reset --hard HEAD~1

El primero deshace el último commit, pero deja los cambios hechos en el área de
índice. El segundo descarta esos cambios.

332

Commits realizados
Para ver los commits realizados, puede emplearse:

git log
git log --oneline #versión compacta
git log -n 5 #solo los últimos 5 commits
git log origin/main..HEAD #solo desde el último push

En el siguiente resultado de git log --oneline, se ven dos commits, el primero es
último commit realizado en nuestro repositorio local, que no ha sido aún
pusheado, y el siguiente es un commit que indica el estado del repositorio remoto.

3e9e19b (HEAD -> main) nuevo js
f89b7d6 (origin/main, origin/HEAD) Initial commit

Ej. 10: Modifica alguno de los archivos creados y crea un fichero y algún
directorio nuevo. Añade todos ellos al index y luego haz un commit. Realiza
un git log para ver los commits realizados.

Ej. 11: Descarta los cambios del último commit y devuélvelos al área de
index. Luego descarta esos cambios del área de index. Realiza un git log para
ver los commits realizados.

Ej. 12: Realiza los siguientes pasos:
1) Crea una carpeta llamada proyecto_web o similar. Crea un nuevo
repositorio en ella (no haremos uso del repositorio remoto).
2) Crea una carpeta src y, dentro de ella, crea un archivo index.html vacío y
realiza un commit inicial.
3) Edita el fichero y ponle una estructura web básica, sin conexión a hora de
estilo ni a archivos JS. Desde el directorio base, añade únicamente el archivo
index.html al área de índice añade el archivo al área de índice con add .  

y realiza un commit.

333

4) Crea una nueva rama llamada agregar-estilo para trabajar en el diseño de la
página web y cambia a esa rama.
5) Agrega un archivo CSS llamado style.css con un estilo simple para el cuerpo
y el título de la página (u otro estilo que desees).
6) Vincula el archivo CSS en el archivo index.html .
7) Haz commit de estos cambios en la rama agregar-estilo.
8) Vuelve a la rama main, de forma que volveremos al estado antes de que se
hicieran los cambios de estilo.
9) Crea una nueva rama llamada agregar-artitulo.
10) Añade un pie de página a index.html (un <footer>), y haz commit de los
cambios en esta nueva rama.
11) Utiliza git log para visualizar el historial de commits y confirmar que todo
está registrado correctamente.
12) En la rama actual, mueve el proyecto a un estado anterior en el historial
de commits. Edita ahora index.html para añadir un <article> con solo un
texto dentro. Añade al área de índice el archivo y haz commit.
13) Crea una nueva rama llamada agregar-contenido-articulo y agrega una
imagen dentro del articulo y pon también un título con h2 y modifica el texto.
14) Revisar el estado actual con git status .
15) Haz un commit de los cambios en la rama actual, realiza un git log para
ver todo el estado del repositorio.

git config --global user.name "«tu nombre»"
git config --global user.email «tur correo»
git config --global init.defaultBranch main
git config core.autocrlf true #Solo necesario si estamos en Windows

1)
mkdir proyecto_web
cd proyecto_web
git init

2)
mkdir src
touch src/index.html
git add .

334

git commit -m "Commit inicial con index.html vacío"
30db3fa (HEAD -> main) Commit inicial con index.html vacío

3)
(Edita el archivo index.html)
git add .
git commit -m "HTML básico en index.html"
* 3aefc38 (HEAD -> main) HTML básico en index.html
* 30db3fa Commit inicial con index.html vacío

4)
git checkout -b agregar-estilo
* 3aefc38 (HEAD -> agregar-estilo, main) HTML básico en index.html
* 30db3fa Commit inicial con index.html vacío

5)
touch src/style.css
(Edita el archivo style.css)

6)
(Edita index.html para vincular style.css con <link>)

7)
git add .
git commit -m "Agregado y vinculado style.css"
* dc5810b (HEAD -> agregar-estilo) Agregado y vinculado style.css
* 3aefc38 (main) HTML básico en index.html
* 30db3fa Commit inicial con index.html vacío

8)
git checkout main

9)
git checkout -b agregar-artitulo
* dc5810b (agregar-estilo) Agregado y vinculado style.css
* 3aefc38 (HEAD -> agregar-artitulo, main) HTML básico en index.html
* 30db3fa Commit inicial con index.html vacío

10)
(Edita index.html para agregar <footer>)
git add .
git commit -m "Agregado footer a index.html"
* 6c26167 (HEAD -> agregar-artitulo) Agregado footer a index.html
| * dc5810b (agregar-estilo) Agregado y vinculado style.css
|/

335

* 3aefc38 (main) HTML básico en index.html
* 30db3fa Commit inicial con index.html vacío

11)
git log # git log --oneline --graph --decorate --all

12)
git reset --hard HEAD~1
* dc5810b (agregar-estilo) Agregado y vinculado style.css
* 3aefc38 (HEAD -> agregar-artitulo, main) HTML básico en index.html
* 30db3fa Commit inicial con index.html vacío
(Edita index.html para agregar <article>)
git add .
git commit -m "Agregado artículo a index.html"
* 494a922 (HEAD -> agregar-artitulo) Agregado artículo a index.html
| * dc5810b (agregar-estilo) Agregado y vinculado style.css
|/
* 3aefc38 (main) HTML básico en index.html
* 30db3fa Commit inicial con index.html vacío

13)
git checkout -b agregar-contenido-articulo
(Edita index.html: agrega imagen, título h2, modifica <article>)
* 494a922 (HEAD -> agregar-contenido-articulo, agregar-artitulo) Agregado
| * dc5810b (agregar-estilo) Agregado y vinculado style.css
|/
* 3aefc38 (main) HTML básico en index.html
* 30db3fa Commit inicial con index.html vacío

14)
git status

15)
git add .
git commit -m "Completar articulo"
git log
* 05db88e (HEAD -> agregar-contenido-articulo) Completar articulo
* 494a922 (agregar-artitulo) Agregado artículo a index.html
| * dc5810b (agregar-estilo) Agregado y vinculado style.css
|/
* 3aefc38 (main) HTML básico en index.html
* 30db3fa Commit inicial con index.html vacío

336

6. Checkout y merge
Para crear una rama, con objeto de implementar nueva característica o corrección
de errores, podemos usar:

git checkout -b «nombre_de_la_rama»

Esto creará una rama nueva, cuyo estado inicial será el que tenga la rama
principal en ese momento, es decir, desde el último commit o merge realizado en
la rama principal (también puede haberse visto afectado este estado por clone,
fetch o pull o rebase). También nos moverá a esa rama.

Como nos ha movido a esa rama, a partir de ahora, los cambios y commits que
realicemos, serán realizarán en esa rama.

Podemos cambiar entre ramas con el comando:

git checkout «nombre_de_la_rama»

Llegará un momento en que queramos fusionar los cambios realizados en la nueva
rama con la rama principal, para ello debemos movernos a la rama principal y
hacer un merge:

git checkout main
git merge «nombre_de_la_rama_a_fusionar_con_la_principal»

Podemos borrar la rama con el siguiente comando:

git branch -d «nombre-de-la-rama»

Observa que es posible que hayamos fusionado los cambios con la rama principal,
pero que queramos seguir trabajando con esa rama, por lo que nos podremos
mover a esa rama, seguir haciendo commits y, tarde o temprano, hacer otro(s)
merge.

337

7. Stash
Puede realizar un guardado de los cambios realizados desde el último commit
junto con el estado de tu área de índice. El siguiente comando guarda esos
cambios y vuelve el estado del área de trabajo y el del índice al estado del
repositorio tras el último commit o similar. Puedes hacer varios stash, que se irán
apilando como en una pila:

git stash # Crea un stash con todos los cambios hechos
git stash push «ruta_a_archivo1» «ruta_a_archivo2»
 #Solo con los cambios en esos archivos
git stash push --staged #Solo de los ficheros en área de índice
git stash push -m "Descripción" # Stash con mensaje

Para examinar los stash existentes:

git stash show # Muestra ellos stash existentes
git stash show -p stash@{n} #Muestra detalle de un stash
git stash show -p -1 #Igual que el anterior

Podemos restaurar el estado de un stash, descartando el estado actual. Para ello,
podemos usar:

git stash pop # Restaura el estado del último stash y lo borra
git stash apply # Igual, pero sin borrarlo de la pila
git checkout stash@{0} -- «ruta_a_archivo1» «ruta_a_archivo2»
 #restaura solo el archivo(especificado

El almacenado en el stash es útil para trabajar con ramas, puesto que el área de
trabajo y de índice se pierden cuando se cambia de rama. El stash es
independiente de las ramas, de forma que quedará inalterado al cambiar de una
rama a otra.

Ej. 13: Reinicia tu repositorio para que apunte al estado inicial, o bien
borra todos los archivos y directorios excepto README.md y realiza un
commit. En este ejercicio vamos a crear una aplicación que codifique y
decodifique una URL.
1) En primer lugar, crearemos una página web que tenga un campo de texto,
un botón y una etiqueta. Cuando se pulse el botón, el programa ejecutará un

338

script, escrito en la misma página HTML, que establecerá la etiqueta con la
URL codificada. Para codificar, usamos encodeURIComponent:
 const original = "https://ex.com/?name=John Doe&age=30";

 const encoded = encodeURIComponent(original);

Realizaremos los cambios en la rama principal y aplicaremos varios commits
para ello.
2) Crea ahora otra rama, con el nombre decode u otro a tu elección.
Implementa un nuevo componente, un radiobutton, y haz un commit.
3) Aplica un cambio menor en el HTML, de forma que el radiobutton se llame
de otra forma, u otro cambio, como englobar todo con un div. Crea un stash
con el estado actual
4) Dirígete ahora a la rama principal con checkout y crea otra rama, llamada
css o similar. Implementa el css para la página tenga un estilo más

elaborado. Observa que ambas son independientes.
5) Fusiona la primera rama con la rama principal, luego fusiona la segunda
rama. Esto hará que los cambios de la primera rama se incorporen a la
segunda.
6) Ve a la primera rama y comprueba que no estará el cambio hecho en 3.
Restáuralo desde el stash ¿qué ha pasado con el link al css?
7) Sigue trabajando en ella, haciendo que, en caso de que el radiobutton esté
en un estado se codifique, y que si esté en otro estado, decodifique, usando
varios commits para ello.
8) Fusiona la rama con la principal.

339

8. Merge vs rebase
Como vimos, cuando creamos una rama nueva, solemos realizar una serie de
commits y, antes o después, querremos incorporar esos cambios a la rama
principal. En el sisguente ejemplo, creamos una nueva rama con un commit (se
muestra el resultado de (git log --oneline --graph --decorate --all).

* cbe72f8 (HEAD -> feature, origin/main, origin/HEAD, main) Initial commit

Tras crear una rama nueva no habrá cambios en el log, salvo que se indicará el
nuevo puntero HEAD feature→ , ya que ahora estamos en esa rama:

* cbe72f8 (HEAD -> feature, origin/main, origin/HEAD, main) Initial commit.

Ahora bien, si creamos ciertos cambios, estando en la nueva rama, y realizamos
un commit en ella, el puntero de feature se moverá hacia un nuevo estado:

* f84af05 (HEAD -> feature) minor changes
* cbe72f8 (origin/main, origin/HEAD, main) Initial commit

Cambiamos ahora a la rama principal, y realizamos un merge , pero lo haremos
forzandolo para que sea sin fast-forward (git merge «rama_a_fusionar» --no-

ff). Se avanzará el puntero de la rama principal hacia el estado de la rama
fusionada, y se conservarán los commits en la rama en la que fueron hechos:

* 7131068 (HEAD -> main) Merge branch 'feature'
|\
| * f84af05 (feature) minor changes
|/
* cbe72f8 (origin/main, origin/HEAD) Initial commit

Observa que hemos tenido que forzar --no-ff porque un merge, por defecto, aplica
un fast forward si es posible. En caso de que tanto la rama principal como la
rama a fusionar tuvieran commits cada uno, no sería posible realizar fast forward,
y el merge se realizaría siempre sin ese fast forward.

Fast forward
Cuando una de las ramas a fusionar no tiene commits (como el caso anterior), es
posible realizar un merge con fast forward (git merge «rama_a_fusionar»).

340

Vamos a usar el apartado anterior. Primero vamos a deshacer el merge y, para
hacerlo correctamente, primero asegúrate qué rama contiene el merge. Vete a esa
rama y haz el reset.

git branch --contains 7131068
git checkout «rama»
git reset --hard HEAD~1

Ahora vamos hacer un merge con fast forward. En este caso, los commits de la
rama fusionada pasan a formar parte de la rama principal (o de la rama hacia la
que fusionemos). Prueba a hacer, desde main, haz el git merge feature ., y
muestra con git log --oneline --decorate --all :

* f84af05 (HEAD -> main, feature) minor changes
* cbe72f8 (origin/main, origin/HEAD) Initial commit

Rebase
En caso de que tengamos ramas a fusionar con cambios en ambas ramas, también
podemos usar rebase (git rebase «rama_a_fusionar»). Este comando, ademas
de fusionar los commits de la rama indicada con la rama actual, aplica todos los
cambios de la rama indicada hacia la rama actual.

Los rebase se hace siempre desde la rama local, nunca desde ramas remotas
(origin/*).

Ej. 14: Crea un nuevo repositorio con tan solo el commit inicial. Tras
clonarlo, crea un archivo index.html y haz un commit en la rama main local.
Luego vuelve a la rama main, al commit inicial (git checkout HEAD~1 o
similar) y crea una rama llamada, por ejemplo, feature , en dicha rama, un
archivo main.js y realizando un commit en dicha rama. Realiza un git log
--oneline --graph --decorate --all para ver el resultado. Deben de

aparecer dos ramas, cada una con un commit.
Fuerza un merge con fast-forward (usa git merge –ff-only) y verás que te
da error.
Realiza ahora un merge fast-forward (usa git merge «rama» --ff «mensaje»

o similar) y observa el hecho de que no te fusiona los commits de las dos
ramas (no te “aplana”). Es decir, te ha realizado un git SIN fast-forward, aún
indicándole que lo hiciera CON fast-forward.

341

Retrocede (usa git reset --hard HEAD~1 o similar) hasta antes del merge y
realiza ahora un merge sin fast-forward (git merge «rama» o git merge
«rama» --no-ff o similar). Verás que no te fusiona commits, tal y como el

merge sin fast-forward hace normalmente.
Retrocede una vez más (git reset --hard HEAD~1 o similar) y realiza ahora
un rebase desde main (git rebase «rama»). Verás que ahora si que te
fusiona los commits de la rama hacia main, aunque no te fusiona ramas.

Resumen:

merge --ff-only merge --no-ff rebase

o feat cambio
|
o main Inicio

o feat, main cambio
|
o inicio

[[merge]]

o main merge
| \
| o feat cambio
| /
o Inicio

o feat, main cambio
|
o inicio

o feat cFeat
| o main cMain
| /
o inicio

error o feat merge
| \
| o main cMain
o | cFeat
| /
o [[merge]]

o main cMain
o feat cFeat
o inicio

342

9. Fetch, pull y push
El comando fetch descarga el repositorio remoto, en su versión más reciente, y la
almacena en el repositorio local (nota, realmente, solo descarga las ramas bajo
“origin” del remoto especificadas en refspec, aunque en repositorios simple esto
suele ser todas las ramas remotas) . Este hecho no originará nunca un conflicto,
porque lo único que avanza es la rama origin/head:

git fetch

Ej. 15: Crea un repositorio, de nuevo desde clone, con tan solo el commit
inicial. Realiza un cambio en un apartado concreto de README.md, luego
crea un archivo index.html y haz un commit en main.
Tras el clone, navega hasta el archivo README.md (hasta que veas el
contenido), y edita el mismo apartado que editastes antes, ahora en la web (en
la pestaña de “Edit”, la opción “Edit single file”), proporcionando una
descripción para el commit.
Dirígete a tu repositorio local y realiza un git fetch. Observa el resultado con
git log.

En proyectos más complejos, con varias ramas en repositorios, git fetch
actualizaría todas las ramas remotas en nuestro repositorio local (todas las
origin/«rama»).

Seguramente, ahora querremos fusionar los cambios hechos en remoto con el
estado de la rama actual, para ello nos situamos en la rama main y realizamos
uno de los siguientes:

git merge origin/main #válido sobre todo si en local no hay cambios.
git rebase origin/main #siempre situado en la rama local, nunca la remota

Si tuvieramos más ramas en local y remoto, tendríamos que situarnos en cada una
de ellas y fusionaralas una a una.

Si existen conflictos en el merge, deberás resolverlos manualmente, abriendo y
modificando cada uno de los archivos que generen conflictos (puedes usar log
status para saber cuáles son estos conflictos).

343

Ej. 16: A partir del ejercicio anterior, realiza un rebase y observa los
cambios con git log.

Pull
Básicamente, equivale a un fech de tan solo la rama actual con la correspondiente
rama del remoto (origin/«nombre_de_la_rama»), seguido por un merge.

git pull

Si has realizado cambios en la rama en cuestión de tu repositorio local (has hecho
commits en ella) desde el último pull que hiciste, el comando puede que te diga
que hay conflictos, que se resolverían de igual forma que al hacer un fetch y
luego un merge.

Push
Finalmente, vemos que, tras la fusión, el puntero de origin/HEAD sigue
apuntando a una posición más antigua que la de main. Esto es porque no hemos
enviado los resultados al servidor. Para ello, usamos:

git push

Esto enviará el código fusionado al servidor remoto.

Observa que un push no tiene por qué realizarse después de una fusión. Si
queremos enviar un código sobre algo que nadie más ha cambiado, como por
ejemplo un componente nuevo, etcétera, podremos realizar un push directamente.

Ej. 17: Realiza un push al respositorio remoto y observa los cambios en git
log.

Ej. 18: Con un compañero, uno de vosotros creará un repositorio remoto y
le dará permiso al otro usuario para modificar dicho repositorio remoto (en la
web de Gitlab, en el repositorio en cuestión, usa la ruta de Manage→Members
(más información en https://docs.gitlab.com/ee/user/project/members/).

344

https://docs.gitlab.com/ee/user/project/members/

Luego, cread repositorios locales en cada uno de vuestros equipos, de forma
que los dos repositorios de ambos sistemas locales se enlacen con él.
Uno de vosotros realizará cambios (crea algún archivo que tenga algún código
y también crea alguna carpeta) y los publicará al escritorio remoto. Luego el
otro compañero los bajará ¿son ahora iguales los archivos de ambos
repositorios locales? Emplead git log --oneline --graph --decorate --all

en ambos sistemas para ver los cambios.

Ej. 19: Probad ahora a editar cada uno de vosotros, cada uno en vuestro
respectivo repositorio local, el mismo fichero (sustituid todo su contenido por
una línea que no sea un comenario), y subidlos al repositorio remoto
mediante. El último en hacer el push deberá resolver el conflicto.

Ej. 20: En la web de Gitlab, en el repositorio remoto, dirígite a Code >
Branches y crea una nueva rama (más información en
https://docs.gitlab.com/ee/user/project/repository/branches/). Haced
un fetch y observad, con git log la nueva rama remota.
Cada uno de vosotros, haced vuestra propia rama en local y haced un cambio
en esa rama (por ejemplo, un nuevo fichero que se llamará igual para ambos
sistema locales con una línea de texto distinta en ambos sistemas) y luego
haced commit.
Estando en esa rama (no en main), realizad un pull (que lo haga primero el
que en el ejercicio anterior fue el último en hacer el push), y observad los
cambios en local y en remoto. Posiblemente, el último en hacer pull deberá
arreglar conflictos.

const a = [{a:3, b:1},{a:2, c:2},{d:1,a:1, c:3}];

345

https://docs.gitlab.com/ee/user/project/repository/branches/

const b = a.reduce((acc,e) => {
 for (const [key, value] of Object.entries(e)) {
 acc[key] = value + (acc[key] || 0)
 }
 return acc;
},{});

console.log(b);
console.log(Object.entries({a:3, b:1}));
console.log(" ");

const c = a.reduce((acc,e) => [...acc, ...Object.entries(e)], [])
//[[a,3], [...]
 .reduce((acc,[key, value]) => ({...acc, [key]:value +
(acc[key]||0) }), {});

console.log(c);

Ej. 21: Realiza los siguientes pasos. Antes de todo, asegúrate que tiene las
configuraciones de email, nombre y, si estás en Windows, de crlf . También
es recomendable hacer un caché de las credenciales. Ve haciendo un git log
(con las opciones necesarias) para ir viendo como evolucionan los repositorios.
a) Crea un directorio, entra en él, e inicializa un repositorio git.
b) Crea un README.md con un texto inicial de una sola línea (con el contenido
TODO o similar).

c) Realiza el clásico commit inicial (Initial Commit).
d) Realiza un git remote add origin «URL_rep_remoto» , y verifica que el
nuevo repositorio ha sido añadido con git remote -v .
e) Realiza un push. Comprueba que el repositorio remoto coincide con el
local. (Nota: también puedes comprobar que sucede con la rama
origin main→ con el git log).

f) Crea una nueva rama. En ella, Añade una carpeta src y, dentro, crea un
nuevo archivo main.js , que contendrá solo una variable de la forma let
a=2; , y luego un if - else if - else. El primer if comprobará si a es igual a 1 y,

si es así, hará un console.log('Es un uno'); . El elseif comparará si a es

346

igual a 2 (y pondrá un mensaje acorde), y el else final mostrará el mensaje de
que es otro número.
g) Realiza commit de los cambios en esta nueva rama. Luego haz un push (o
bien un fetch y luego un push, que es más típico, aunque en este caso el
resultado es el mismo, ya que en remoto no se ha cambiado nada).
h) Dirígete al escritorio remoto, en la página web. Asegurándote de hacerlo
en la rama main , cambia README.md para que ahora contenga tres
cabeceras de primer nivel, la primera cabecera se llamará install , la
segunda config y la tercdera run . Bajo cada cabecera habrá un texto que
tu desee. Los cambios deberán ser hechos con un commit (y su respectivo
mensaje de commit), que te deberá ser preguntado en la web al grabar los
cambios.
Nota: una cabecera de primer nivel, en este tipo de archivos, se implementa
con un carácter # , y los subapartados con ## , ### , etcétera.
i) Ve al repositorio local, a la rama main. Modifica el README.md para que
tenga dos cabeceras, una llamada config y otra llamada notes . Bajo cada
cabecera habrá un texto que elijas, que será distinto del que pusieras en el
anterior apartado. Realiza un commit en local de este cambio.
j) Siguiendo en la rama principal, realiza un pull. Verás que se produce un
error, ya que las ramas son divergentes. No continues con el pull, sino que
realiza un fetch.
k) Fusiona la dos ramas main (la local y la remota), de forma que los commits
se fusionen también.
l) Vuelve atrás con git reset --hard «ID», siendo «ID» la id anterior al rebase
(usa git reflog para averiguarlo si no la sabes). Haz un merge de las ramas
main.

a) mkdir proyecto
 cd proyecto

 git init

347

b) Crea el archivo README.md con un texto cualquiera
c) git add README.md #también valdría: git add .
 git commit -m "Initial Commit"

 # * 0aa013e (HEAD -> main) Initial Commit

d) Crea el repositorio remoto en blanco, desmarcando el creear “README.md”.
 URL: https://gitlab.com/mydaw/daw2# → https://gitlab.com/mydaw/daw2.git
 git remote add origin «URL_rep_remoto»

 git remote -v #Permite ver los remotes

 #Borrar todos los remotes: git remote | xargs -n1 git remote remove

e) git push -u origin main #El -u asocia las ramas remota y local
 # * 0aa013e (HEAD -> main, origin/main) Initial Commit

f) git checkout -b crear_script #Crea una rama y cambia a ella
 mkdir src

 Crea src/main.js con el contenido:
 let a = 2;

 if (a == 1) { console.log('Es un uno'); }

 else if (a == 2) { console.log('Es un dos'); }

 else { console.log('Es otro número'); }";

 # * 0aa013e (HEAD -> crear_script, origin/main, main) Initial Commit

g) git add .

 git commit -m "Añadido src y main.js"

 git push -u origin crear_script #El -u asocia las ramas remota y local

 # * 8b7465e (HEAD -> crear_script, origin/crear_script) Añadido...

 # * 0aa013e (origin/main, main) Initial Commit

h) Modifica, en remoto, el README.md, usando el botón de edit (edit single file).
Tras modificar el contenido, los cambios se aceptan con el botón “commit
changes”:
 # install

 Texto para instalación.

 # config

 Texto para configuración.

 # run

 Texto para ejecución.

i) git checkout main
 # * 8b7465e (origin/crear_script, crear_script) Añadido src y main.js

 # * 0aa013e (HEAD -> main, origin/main) Initial Commit

 Cambia el README.md local para que tenga “config” y “notes”.
 git add .

 git commit -m "edit README.md with 2 headers"

348

https://gitlab.com/mydaw/daw2

 # * f66a1c1 (HEAD -> main) edit README.md with 2 headers

 # | * 8b7465e (origin/crear_script, crear_script) Añadido src...

 # |/

 # * 0aa013e (origin/main) Initial Commit

j) git pull

 git fetch

 # * f66a1c1 (HEAD -> main) edit README.md with 2 headers

 # | * 96cdcc7 (origin/main) Edit README.md

 # |/

 # | * 8b7465e (origin/crear_script, crear_script) Añadido src...

 # |/

 # * 0aa013e Initial Commit

k) # git checkout main #(solo si estábamos en otra rama

 git checkout #Solo para ver que divergen

 git rebase origin/main

 Edita el contenido de README.md, o usa git rebase –abort para abortar.
 git add README.md

 git rebase --continue

 # * 3106887 (HEAD -> main) edit Merged 3 and 2 README.md headers

 # * 96cdcc7 (origin/main) Edit README.md

 # | * 8b7465e (origin/crear_script, crear_script) Añadido src ...

 # |/

 # * 0aa013e Initial Commit

l) git reglog #apunta la ID del estado anterior al rebase

 git reset --hard «ID» #Sustituye la ID

 git merge origin/main #asumimos que seguimos en rama main

 Edita el contenido de README.md.
 git add README.md

 git commit -m "Merge 2 y 3 headers in README.md"

 # * 84028ae (HEAD -> main) Merge 2 y 3 headers in README.md

 # |\

 # | * 96cdcc7 (origin/main) Edit README.md

 # * | f66a1c1 edit README.md with 2 headers

 # |/

 # | * 8b7465e (origin/crear_script, crear_script) Añadido src y main.js

 # |/

 # * 0aa013e Initial Commit

349

	Parte I: HTML
	Unidad Didáctica 1: Tecnologías web
	1. Petición web
	2. La red TCP/IP
	Máquinas con varias IPs
	UDP

	4. Direcciones web
	Estructura básica de una URL
	Dominio, subdominios y DNS

	5. Opciones a la URL
	Especificar un puerto
	Usuario y/o contraseña
	Consultas
	Sección
	Sintaxis completa

	6. DNS
	Servidor autoritativo en el propio dominio
	Delegación a un servidor de nombres
	Delegación de subdominios
	Resolutores de nombres

	7. Obtener un recurso web
	HTTPS
	HTTP
	Una prueba con netcat

	Unidad Didáctica 2: HTML 5
	1. Lenguaje de marcas
	Estructura de un nodo
	Anidar nodos

	2. Guía de estilo
	Identado y espaciado

	3. Estructura básica
	4. Elementos básicos
	5. Elementos phrasing
	Elementos semánticos puros
	Elementos de valor
	Componentes
	Idiomas
	Salto de línea
	Comportamientos adicionales
	Elementos de formato

	Parte II: Programación básica
	Unidad Didáctica 1: Instalación del entorno
	1. Instalación en Linux
	Centro de aplicaciones
	Repositorio de terceros
	Snap
	Paquetes Deb
	Código fuente

	2. Entorno VSCode
	Barra lateral
	Editor de código
	Ejecución JS con LiveServer

	3. ¿Qué es un programa?
	Áreas de sistemas y de desarrollo

	4. El primer programa
	Reformatear y grabar código

	5. Ejecutar el programa

	Unidad Didáctica 2: Variables y operaciones
	1. Variables y tipos
	Tipos de datos básicos
	Literales
	Nombres de las variables

	2. Inputs y Alerts
	3. Cadenas
	Concatenar cadenas
	Longitud de una cadena
	Subcadenas

	4. Números
	Conversión Cadena ⬄ Número

	5. Booleanos
	Comparadores

	6. Ejercicios adicionales

	Unidad Didáctica 3: Condicionales
	1. Condicional simple
	Condiciones complejas

	2. Anidar condicionales
	3. Estructura else if
	4. Cláusula else
	5. Ejercicios adicionales
	6. Ejercicios de refuerzo

	Unidad Didáctica 4: Listas
	1. Listas
	Tamaño de una lista
	Añadir un elemento al final
	Concatenar listas
	Sublistas
	Modificar elementos
	Borrar elementos
	Elementos en una lista

	2. Ejercicios adicionales

	Unidad Didáctica 5: Bucles
	1. Bucles while
	Bucle while básico
	Contador inverso
	Iterar cadenas
	Otras condiciones de salida
	Condicional dentro del bucle

	2. Bucles for
	Bucles for y cadenas

	3. For tradicional
	4. Bucles anidados
	5. Ejercicios adicionales
	6. Ejercicios avanzados

	Unidad Didáctica 6: Funciones
	1. Definición
	2. Invocar una función
	3. Argumentos
	Argumentos indeterminados

	4. Return
	5. Funciones anónimas
	Función flecha

	Unidad Didáctica 7: Typescript

	Parte III: Programación avanzada
	Unidad Didáctica 1: Expresiones regulares
	1. Busquedas literales
	Caracteres especiales
	Modificadores

	2. Clases de caracteres
	Rangos
	Negación
	Clases predefinidas

	3. Multiplicadores
	4. Grupos de captura
	Operador Barra

	5. Marcas

	Unidad Didáctica 2: Closures
	1. Closures
	Varios closures simultáneos

	Unidad Didáctica 3: Programación funcional
	1. Introducción
	2. Transformar elementos
	Map
	Trabajando con objetos
	map con 3 argumentos

	3. filtrar elementos
	filter con 3 argumentos
	Ejercicios adicionales

	4. Reducir array
	Reduce con 3 argumentos
	Trabajando con objetos
	Generando arrays
	Combinado reduce y otros métodos

	5. Detectar y buscar elementos
	Every
	Some
	Find
	indexOf y lastIndexOf

	6. Crear flujo desde cadena
	split con límite
	Split y regex
	Combinando split con otros métodos

	7. Concaternar flujos
	8. foreach
	Empleando variables externas
	Foreach con 3 argumentos
	Foreach y objetos
	Foreach no devuelve nada

	9. Transformar flujos
	Reverse

	Parte IV: Servidor Node
	Unidad Didáctica 1: Gestión del proyecto
	1. Iniciar proyecto
	Npm
	Yarn

	2. Scripts
	Ejecutar scripts

	3. Instalación de paquetes
	Dependencias de desarrollo.

	4. Servir proyecto
	5. Empaquetadores
	Parcel
	Webpack

	Unidad Didáctica 2: Servidor web propio
	Conectar scripts con node
	Ejecutar proyecto
	2. Crear el servidor
	Crear el servidor con el módulo http
	Añadir paquetes al proyecto

	3. Rutas
	Enviar ficheros

	Unidad Didáctica 3: Crear proyecto React
	1. Create React App
	Crear aplicación
	Estructura

	2. Vite
	Crear aplicación
	Estructura

	3. Main y componente principal
	Ejecutar la aplicación

	4. Modificando app
	Añadiendo CSS
	Fragmentos
	Código JS
	React Developer Tools
	Propiedades

	Parte V: Instalación web
	Unidad Didáctica 1: Instalación de Apache2
	1. Instalación
	Documentación
	Directorios
	Analizar la red

	2. Estado del servidor
	FQDN
	Fichero envvars

	3. Uso de systemctl
	4. Desinstalación
	5. Mime
	Fichero magic

	Unidad Didáctica 2: Directivas de configuración
	1. Ficheros de configuración
	Incluir ficheros
	Directivas core y no core

	2. Directivas de contexto
	3. Directivas de acceso
	4. Directiva Options
	Índice de directorios
	Enlaces simbólicos
	Multiviews
	Ejcución de archivos

	5. Configuración de directorio
	AllowOverride

	6. Configuración inicial

	Unidad Didáctica 3: Gestión de módulos y configuraciones
	1. Configuración y activación
	Directorio

	2. Módulo mod_alias
	Redirect

	3. Módulo mod_autoindex
	Iconos
	Cabecera y pie

	4. Módulo mod_deflate
	Filtro con DEFLATE

	5. Módulo mod_dir
	6. Módulo mod_mime
	MIME
	Codificación
	Idioma
	Charset

	7. Módulo mod_reqtimeout
	8. Módulo mod_status
	9. Configuración Security
	10. Módulos y configs por defecto
	11. Instalación de módulos

	Unidad Didáctica 4: Host virtuales
	1. Directiva VirtualHost
	Habilitar y desabilitar hosts virtuales

	2. Parámetros de Virtualhost
	Hosts por ServerName
	Hosts por IP/puerto
	Virtualhost por defecto

	Parte VI: Plataformas
	Unidad Didáctica 1: Virtualbox
	1. Instalar VirtualBox
	Instalación de prerequisitos
	Instalación del Extension Pack

	2. Descargar ISO
	Descarga la máquina
	Verificar el fichero ISO

	3. Crear máquina
	Parámetros de la máquina
	Instalación de la máquina

	4. Guest Additions
	Insertar CD con los ficheros de la GuestAdditions
	Instalar las GuestAdditions

	5. Configurar la red

	Unidad Didáctica 2: Instalar Wordpress
	1. Apache2
	2. Instalación de PHP
	3. Instalar MariaDB
	4. Despliega Wordpress
	Fichero de configuración de Wordpress

	5. Instala Wordpress
	6. Configuración de red

	Parte VII: Herramientas
	Unidad Didáctica 1: Git
	1. Configuración
	Niveles
	Establecer, mostrar y borrar
	Configuración personal
	Configuración operativa
	Credenciales

	2. Iniciar un repositorio
	3. Desarrollo en local
	Trabajar con ramas
	Trabajar con varias ramas
	Actualización del remoto

	4. Área de índice
	5. Commit
	Deshacer cambios
	Commits realizados

	6. Checkout y merge
	7. Stash
	8. Merge vs rebase
	Fast forward
	Rebase

	9. Fetch, pull y push
	Pull
	Push

